logo

Klon en udirigeret graf

Prøv det på GfG Practice Klon en udirigeret graf' title=

Givet en  forbundet urettet graf  repræsenteret ved tilknytningsliste  adjList[][]  med  noder og  m  kanter, hvor hver knude har en  særskilt mærke  fra  0 til n-1 og hver adj[i] repræsenterer listen over toppunkter, der er forbundet med toppunkt i.

Opret en  klon  af grafen, hvor hver node i grafen indeholder et heltal  val  og et array ( naboer ) af noder  



klasse Node {
val: heltal
naboer: Liste[Node]
}

Din opgave er at klone den givne graf og returnere en reference til den klonede graf.

Note: Hvis du returnerer en korrekt kopi af den givne graf, vil outputtet være sandt; Ellers udskrives den falsk, hvis kopien er forkert.



Eksempler

Input: n = 4 adjList[][] = [[1 2] [0 2] [0 1 3] [2]]
Produktion: ægte
Forklaring:
Klon en udirigeret graf
Da den klonede graf er identisk med originalen, vil outputtet være sandt.

Input: n = 3 adjList[][] = [[1 2] [0] [0]]
Produktion: ægte
Forklaring:
Da den klonede graf er identisk med originalen, vil outputtet være sandt.



Indholdsfortegnelse

Hvorfor skal vi spore de besøgte/klonede noder?

Vi skal spore besøgte eller klonede noder for at undgå uendelig rekursion og overflødigt arbejde, når vi kloner en graf. Da grafer kan indeholde cyklusser (hvor en node kan pege tilbage til en tidligere besøgt node) uden at holde styr på de noder, vi allerede har klonet, ville kloningsfunktionen uendeligt genbesøge de samme noder, hvilket resulterede i et stak-overløb eller forkert duplikering.

Hvordan holder man styr på de besøgte/klonede noder?

Et HashMap/Map er påkrævet for at vedligeholde alle de noder, der allerede er oprettet. Nøglebutikker : Reference/adresse på original node : Reference/adresse på klonet node Der er lavet en kopi af alle grafknuderne.

understreng af streng java

Hvordan forbinder man klon noder?

Mens du besøger de tilstødende hjørner af en node i få den tilsvarende klonet node for dig lad os kalde det I besøg nu alle de nærliggende knudepunkter for i og for hver nabo, find den tilsvarende klonnode (hvis den ikke findes, lav en) og skub derefter ind i den tilstødende vektor af I node. 

Hvordan kontrollerer man, om den klonede graf er korrekt?

Udfør en BFS-gennemgang på den originale graf før kloning og derefter igen på den klonede graf, efter at kloningen er fuldført. Under hver gennemgang udskrives værdien af ​​hver node sammen med dens adresse (eller reference). For at verificere rigtigheden af ​​kloningen, sammenligne rækkefølgen af ​​besøgte noder i begge gennemløb. Hvis nodeværdierne vises i samme rækkefølge, men deres adresser (eller referencer) er forskellige, bekræfter det, at grafen er blevet klonet med succes og korrekt.

Udforsk hvordan klone en urettet graf inklusive grafer med flere forbundne komponenter

[Tilgang 1] Brug af BFS-traversal - O(V+E) Tid og O(V) Mellemrum

I BFS-tilgangen klones grafen iterativt ved hjælp af en kø. Vi begynder med at klone den indledende node og placere den i køen. Mens vi behandler hver knude fra køen, besøger vi dens naboer. Hvis en nabo endnu ikke er blevet klonet, opretter vi en klon, gemmer den på et kort og sætter den i kø til senere behandling. Vi tilføjer derefter naboens klon til den aktuelle nodes klonliste over naboer. Denne proces fortsætter niveau for niveau og sikrer, at alle noder besøges i bredde-første rækkefølge. BFS er især nyttig til at undgå dyb rekursion og håndtering af store eller brede grafer effektivt.

C++
#include    #include  #include  #include  using namespace std; // Definition for a Node struct Node {  int val;  vector<Node*> neighbors; }; // Clone the graph  Node* cloneGraph(Node* node) {  if (!node) return nullptr;  map<Node* Node*> mp;  queue<Node*> q;    // Clone the source node  Node* clone = new Node();  clone->val = node->val;  mp[node] = clone;  q.push(node);  while (!q.empty()) {  Node* u = q.front();  q.pop();  for (auto neighbor : u->neighbors) {    // Clone neighbor if not already cloned  if (mp.find(neighbor) == mp.end()) {  Node* neighborClone = new Node();  neighborClone->val = neighbor->val;  mp[neighbor] = neighborClone;  q.push(neighbor);  }  // Link clone of neighbor to clone of current node  mp[u]->neighbors.push_back(mp[neighbor]);  }  }  return mp[node]; } // Build graph Node* buildGraph() {  Node* node1 = new Node(); node1->val = 0;  Node* node2 = new Node(); node2->val = 1;  Node* node3 = new Node(); node3->val = 2;  Node* node4 = new Node(); node4->val = 3;  node1->neighbors = {node2 node3};  node2->neighbors = {node1 node3};  node3->neighbors = {node1 node2 node4};  node4->neighbors = {node3};  return node1; }   // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2   map<Node* Node*>& visited) {  if (!node1 || !node2)   return node1 == node2;    if (node1->val != node2->val || node1 == node2)  return false;  visited[node1] = node2;  if (node1->neighbors.size() != node2->neighbors.size())   return false;  for (size_t i = 0; i < node1->neighbors.size(); ++i) {  Node* n1 = node1->neighbors[i];  Node* n2 = node2->neighbors[i];  if (visited.count(n1)) {  if (visited[n1] != n2)   return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code int main() {  Node* original = buildGraph();  Node* cloned = cloneGraph(original);  map<Node* Node*> visited;  cout << (compareGraphs(original cloned visited) ?   'true' : 'false') << endl;  return 0; } 
Java
import java.util.*; // Definition for a Node class Node {  public int val;  public ArrayList<Node> neighbors;  public Node() {  neighbors = new ArrayList<>();  }  public Node(int val) {  this.val = val;  neighbors = new ArrayList<>();  } } public class GfG {  // Clone the graph  public static Node cloneGraph(Node node) {  if (node == null) return null;  Map<Node Node> mp = new HashMap<>();  Queue<Node> q = new LinkedList<>();  // Clone the starting node  Node clone = new Node(node.val);  mp.put(node clone);  q.offer(node);  while (!q.isEmpty()) {  Node current = q.poll();  for (Node neighbor : current.neighbors) {  // Clone neighbor if it hasn't been cloned yet  if (!mp.containsKey(neighbor)) {  mp.put(neighbor new Node(neighbor.val));  q.offer(neighbor);  }  // Add the clone of the neighbor to the current node's clone  mp.get(current).neighbors.add(mp.get(neighbor));  }  }  return mp.get(node);  }  // Build graph  public static Node buildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.addAll(new ArrayList<>  (Arrays.asList(node2 node3)));  node2.neighbors.addAll(new ArrayList<>  (Arrays.asList(node1 node3)));  node3.neighbors.addAll(new ArrayList<>  (Arrays.asList(node1 node2 node4)));  node4.neighbors.addAll(new ArrayList<>  (Arrays.asList(node3)));  return node1;  }  // Compare two graphs for structure and value  public static boolean compareGraphs(Node n1 Node n2   HashMap<Node Node> visited) {  if (n1 == null || n2 == null)  return n1 == n2;  if (n1.val != n2.val || n1 == n2)  return false;  visited.put(n1 n2);  if (n1.neighbors.size() != n2.neighbors.size())  return false;  for (int i = 0; i < n1.neighbors.size(); i++) {  Node neighbor1 = n1.neighbors.get(i);  Node neighbor2 = n2.neighbors.get(i);  if (visited.containsKey(neighbor1)) {  if (visited.get(neighbor1) != neighbor2)  return false;  } else {  if (!compareGraphs(neighbor1 neighbor2 visited))  return false;  }  }  return true;  }  public static void main(String[] args) {  Node original = buildGraph();  Node cloned = cloneGraph(original);  boolean isEqual = compareGraphs(original cloned  new HashMap<>());  System.out.println(isEqual ? 'true' : 'false');  } } 
Python
from collections import deque # Definition for a Node class Node: def __init__(self val=0): self.val = val self.neighbors = [] # Clone the graph def cloneGraph(node): if not node: return None # Map to hold original nodes as keys and their clones as values mp = {} # Initialize BFS queue q = deque([node]) # Clone the starting node mp[node] = Node(node.val) while q: current = q.popleft() for neighbor in current.neighbors: # If neighbor not cloned yet if neighbor not in mp: mp[neighbor] = Node(neighbor.val) q.append(neighbor) # Link clone of neighbor to the clone of the current node mp[current].neighbors.append(mp[neighbor]) return mp[node] # Build graph def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs structurally and by values def compareGraphs(n1 n2 visited): if not n1 or not n2: return n1 == n2 if n1.val != n2.val or n1 is n2: return False visited[n1] = n2 if len(n1.neighbors) != len(n2.neighbors): return False for i in range(len(n1.neighbors)): neighbor1 = n1.neighbors[i] neighbor2 = n2.neighbors[i] if neighbor1 in visited: if visited[neighbor1] != neighbor2: return False else: if not compareGraphs(neighbor1 neighbor2 visited): return False return True # Driver if __name__ == '__main__': original = buildGraph() cloned = cloneGraph(original) result = compareGraphs(original cloned {}) print('true' if result else 'false') 
C#
using System; using System.Collections.Generic; // Definition for a Node public class Node {  public int val;  public List<Node> neighbors;  public Node() {  neighbors = new List<Node>();  }  public Node(int val) {  this.val = val;  neighbors = new List<Node>();  } } class GfG {    // Clone the graph   public static Node CloneGraph(Node node) {  if (node == null)   return null;  var mp = new Dictionary<Node Node>();  var q = new Queue<Node>();  // Clone the starting node  var clone = new Node(node.val);  mp[node] = clone;  q.Enqueue(node);  while (q.Count > 0) {  var current = q.Dequeue();  foreach (var neighbor in current.neighbors) {  // If neighbor not cloned clone it and enqueue  if (!mp.ContainsKey(neighbor)) {  mp[neighbor] = new Node(neighbor.val);  q.Enqueue(neighbor);  }  // Add clone of neighbor to clone of current  mp[current].neighbors.Add(mp[neighbor]);  }  }  return mp[node];  }  // Build graph  public static Node BuildGraph() {  var node1 = new Node(0);  var node2 = new Node(1);  var node3 = new Node(2);  var node4 = new Node(3);  node1.neighbors.AddRange(new[] { node2 node3 });  node2.neighbors.AddRange(new[] { node1 node3 });  node3.neighbors.AddRange(new[] { node1 node2 node4 });  node4.neighbors.AddRange(new[] { node3 });  return node1;  }  // Compare two graphs for structure and value  public static bool CompareGraphs(Node n1 Node n2 Dictionary<Node Node> visited) {  if (n1 == null || n2 == null)   return n1 == n2;    if (n1.val != n2.val || ReferenceEquals(n1 n2))   return false;  visited[n1] = n2;  if (n1.neighbors.Count != n2.neighbors.Count)   return false;  for (int i = 0; i < n1.neighbors.Count; i++) {  var neighbor1 = n1.neighbors[i];  var neighbor2 = n2.neighbors[i];  if (visited.ContainsKey(neighbor1)) {  if (!ReferenceEquals(visited[neighbor1] neighbor2))   return false;  } else {  if (!CompareGraphs(neighbor1 neighbor2 visited))  return false;  }  }  return true;  }  public static void Main() {  var original = BuildGraph();  var cloned = CloneGraph(original);  var visited = new Dictionary<Node Node>();  Console.WriteLine(CompareGraphs(original cloned visited)   ? 'true' : 'false');  } } 
JavaScript
// Definition for a Node class Node {  constructor(val = 0) {  this.val = val;  this.neighbors = [];  } } // Clone the graph function cloneGraph(node) {  if (!node) return null;  const mp = new Map();  const q = [node];  // Clone the initial node  mp.set(node new Node(node.val));  while (q.length > 0) {  const current = q.shift();  for (const neighbor of current.neighbors) {  if (!mp.has(neighbor)) {  mp.set(neighbor new Node(neighbor.val));  q.push(neighbor);  }  // Link clone of neighbor to clone of current  mp.get(current).neighbors.push(mp.get(neighbor));  }  }  return mp.get(node); } // Build graph function buildGraph() {  const node1 = new Node(0);  const node2 = new Node(1);  const node3 = new Node(2);  const node4 = new Node(3);  node1.neighbors = [node2 node3];  node2.neighbors = [node1 node3];  node3.neighbors = [node1 node2 node4];  node4.neighbors = [node3];  return node1; } // Compare two graphs structurally and by value function compareGraphs(n1 n2 visited = new Map()) {  if (!n1 || !n2)   return n1 === n2;    if (n1.val !== n2.val || n1 === n2)   return false;  visited.set(n1 n2);  if (n1.neighbors.length !== n2.neighbors.length)   return false;  for (let i = 0; i < n1.neighbors.length; i++) {  const neighbor1 = n1.neighbors[i];  const neighbor2 = n2.neighbors[i];  if (visited.has(neighbor1)) {  if (visited.get(neighbor1) !== neighbor2)   return false;    } else {  if (!compareGraphs(neighbor1 neighbor2 visited))  return false;    }  }  return true; } // Driver const original = buildGraph(); const cloned = cloneGraph(original); const result = compareGraphs(original cloned); console.log(result ? 'true' : 'false'); 

Produktion
true 

[Tilgang 2] Brug af DFS-traversal - O(V+E) Tid og O(V) Mellemrum

I DFS-tilgangen klones grafen ved hjælp af rekursion. Vi starter fra den givne node og udforsker så langt som muligt langs hver gren, før vi går tilbage. Et kort (eller ordbog) bruges til at holde styr på allerede klonede noder for at undgå at behandle den samme node flere gange og til at håndtere cyklusser. Når vi støder på en node for første gang, opretter vi en klon af den og gemmer den på kortet. Derefter kloner vi den rekursivt for hver nabo til den node og føjer den klonede nabo til den aktuelle nodes klon. Dette sikrer, at alle noder besøges dybt, før de vender tilbage, og grafstrukturen er trofast kopieret.

C++
#include    #include  #include  #include  using namespace std; // Definition for a Node struct Node {  int val;  vector<Node*> neighbors; }; // Map to hold original node to its copy unordered_map<Node* Node*> copies; // Function to clone the graph  Node* cloneGraph(Node* node) {    // If the node is NULL return NULL  if (!node) return NULL;  // If node is not yet cloned clone it  if (copies.find(node) == copies.end()) {  Node* clone = new Node();  clone->val = node->val;  copies[node] = clone;  // Recursively clone neighbors  for (Node* neighbor : node->neighbors) {  clone->neighbors.push_back(cloneGraph(neighbor));  }  }  // Return the clone  return copies[node]; } // Build graph Node* buildGraph() {  Node* node1 = new Node(); node1->val = 0;  Node* node2 = new Node(); node2->val = 1;  Node* node3 = new Node(); node3->val = 2;  Node* node4 = new Node(); node4->val = 3;  node1->neighbors = {node2 node3};  node2->neighbors = {node1 node3};  node3->neighbors = {node1node2 node4};  node4->neighbors = {node3};  return node1; } // Compare two graphs for structural and value equality bool compareGraphs(Node* node1 Node* node2 map<Node* Node*>& visited) {  if (!node1 || !node2)   return node1 == node2;  if (node1->val != node2->val || node1 == node2)  return false;  visited[node1] = node2;  if (node1->neighbors.size() != node2->neighbors.size())   return false;  for (size_t i = 0; i < node1->neighbors.size(); ++i) {  Node* n1 = node1->neighbors[i];  Node* n2 = node2->neighbors[i];  if (visited.count(n1)) {  if (visited[n1] != n2)   return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code int main() {  Node* original = buildGraph();  // Clone the graph  Node* cloned = cloneGraph(original);  // Compare original and cloned graph  map<Node* Node*> visited;  cout << (compareGraphs(original cloned visited) ?   'true' : 'false') << endl;  return 0; } 
Java
import java.util.*; // Definition for a Node class Node {  int val;  ArrayList<Node> neighbors;  Node() {  neighbors = new ArrayList<>();  }  Node(int val) {  this.val = val;  neighbors = new ArrayList<>();  } } public class GfG {  // Map to hold original node to its copy  static HashMap<Node Node> copies = new HashMap<>();  // Function to clone the graph using DFS  public static Node cloneGraph(Node node) {  // If the node is NULL return NULL  if (node == null) return null;  // If node is not yet cloned clone it  if (!copies.containsKey(node)) {  Node clone = new Node(node.val);  copies.put(node clone);  // Recursively clone neighbors  for (Node neighbor : node.neighbors) {  clone.neighbors.add(cloneGraph(neighbor));  }  }  // Return the clone  return copies.get(node);  }  // Build graph  public static Node buildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.addAll(Arrays.asList(node2 node3));  node2.neighbors.addAll(Arrays.asList(node1 node3));  node3.neighbors.addAll(Arrays.asList(node1node2 node4));  node4.neighbors.addAll(Arrays.asList(node3));  return node1;  }  // Compare two graphs for structural and value equality  public static boolean compareGraphs(Node node1 Node node2   HashMap<Node Node> visited) {  if (node1 == null || node2 == null)  return node1 == node2;  if (node1.val != node2.val || node1 == node2)  return false;  visited.put(node1 node2);  if (node1.neighbors.size() != node2.neighbors.size())  return false;  for (int i = 0; i < node1.neighbors.size(); i++) {  Node n1 = node1.neighbors.get(i);  Node n2 = node2.neighbors.get(i);  if (visited.containsKey(n1)) {  if (visited.get(n1) != n2)  return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true;  }  // Driver Code  public static void main(String[] args) {  Node original = buildGraph();  // Clone the graph  Node cloned = cloneGraph(original);  // Compare original and cloned graph  boolean result = compareGraphs(original cloned new HashMap<>());  System.out.println(result ? 'true' : 'false');  } } 
Python
# Definition for a Node class Node: def __init__(self val=0 neighbors=None): self.val = val self.neighbors = neighbors if neighbors is not None else [] # Map to hold original node to its copy copies = {} # Function to clone the graph  def cloneGraph(node): # If the node is None return None if not node: return None # If node is not yet cloned clone it if node not in copies: # Create a clone of the node clone = Node(node.val) copies[node] = clone # Recursively clone neighbors for neighbor in node.neighbors: clone.neighbors.append(cloneGraph(neighbor)) # Return the clone return copies[node] def buildGraph(): node1 = Node(0) node2 = Node(1) node3 = Node(2) node4 = Node(3) node1.neighbors = [node2 node3] node2.neighbors = [node1 node3] node3.neighbors = [node1 node2 node4] node4.neighbors = [node3] return node1 # Compare two graphs for structural and value equality def compareGraphs(node1 node2 visited): if not node1 or not node2: return node1 == node2 if node1.val != node2.val or node1 is node2: return False visited[node1] = node2 if len(node1.neighbors) != len(node2.neighbors): return False for i in range(len(node1.neighbors)): n1 = node1.neighbors[i] n2 = node2.neighbors[i] if n1 in visited: if visited[n1] != n2: return False else: if not compareGraphs(n1 n2 visited): return False return True # Driver Code if __name__ == '__main__': original = buildGraph() # Clone the graph using DFS cloned = cloneGraph(original) # Compare original and cloned graph visited = {} print('true' if compareGraphs(original cloned visited) else 'false') 
C#
using System; using System.Collections.Generic; public class Node {  public int val;  public List<Node> neighbors;  public Node() {  val = 0;  neighbors = new List<Node>();  }  public Node(int _val) {  val = _val;  neighbors = new List<Node>();  } } class GfG {  // Dictionary to hold original node to its copy  static Dictionary<Node Node> copies = new Dictionary<Node Node>();  // Function to clone the graph using DFS  public static Node CloneGraph(Node node) {  // If the node is NULL return NULL  if (node == null) return null;  // If node is not yet cloned clone it  if (!copies.ContainsKey(node)) {  Node clone = new Node(node.val);  copies[node] = clone;  // Recursively clone neighbors  foreach (Node neighbor in node.neighbors) {  clone.neighbors.Add(CloneGraph(neighbor));  }  }  // Return the clone  return copies[node];  }  // Build graph  public static Node BuildGraph() {  Node node1 = new Node(0);  Node node2 = new Node(1);  Node node3 = new Node(2);  Node node4 = new Node(3);  node1.neighbors.Add(node2);  node1.neighbors.Add(node3);  node2.neighbors.Add(node1);  node2.neighbors.Add(node3);  node3.neighbors.Add(node1);  node3.neighbors.Add(node2);  node3.neighbors.Add(node4);    node4.neighbors.Add(node3);  return node1;  }  // Compare two graphs for structural and value equality  public static bool CompareGraphs(Node node1 Node node2   Dictionary<Node Node> visited) {  if (node1 == null || node2 == null)  return node1 == node2;  if (node1.val != node2.val || node1 == node2)  return false;  visited[node1] = node2;  if (node1.neighbors.Count != node2.neighbors.Count)  return false;  for (int i = 0; i < node1.neighbors.Count; i++) {  Node n1 = node1.neighbors[i];  Node n2 = node2.neighbors[i];  if (visited.ContainsKey(n1)) {  if (visited[n1] != n2)  return false;  } else {  if (!CompareGraphs(n1 n2 visited))  return false;  }  }  return true;  }  // Driver Code  public static void Main() {  Node original = BuildGraph();  // Clone the graph using DFS  Node cloned = CloneGraph(original);  // Compare original and cloned graph  bool isEqual = CompareGraphs(original cloned new  Dictionary<Node Node>());  Console.WriteLine(isEqual ? 'true' : 'false');  } } 
JavaScript
// Definition for a Node class Node {  constructor(val = 0) {  this.val = val;  this.neighbors = [];  } } // Map to hold original node to its copy const copies = new Map(); // Function to clone the graph using DFS function cloneGraph(node) {  // If the node is NULL return NULL  if (node === null) return null;  // If node is not yet cloned clone it  if (!copies.has(node)) {  const clone = new Node(node.val);  copies.set(node clone);  // Recursively clone neighbors  for (let neighbor of node.neighbors) {  clone.neighbors.push(cloneGraph(neighbor));  }  }  // Return the clone  return copies.get(node); } // Build graph function buildGraph() {  const node1 = new Node(0);  const node2 = new Node(1);  const node3 = new Node(2);  const node4 = new Node(3);  node1.neighbors.push(node2 node3);  node2.neighbors.push(node1 node3);  node3.neighbors.push(node1 node2 node4);  node4.neighbors.push(node3);  return node1; } // Compare two graphs for structural and value equality function compareGraphs(node1 node2 visited = new Map()) {  if (!node1 || !node2)  return node1 === node2;  if (node1.val !== node2.val || node1 === node2)  return false;  visited.set(node1 node2);  if (node1.neighbors.length !== node2.neighbors.length)  return false;  for (let i = 0; i < node1.neighbors.length; i++) {  const n1 = node1.neighbors[i];  const n2 = node2.neighbors[i];  if (visited.has(n1)) {  if (visited.get(n1) !== n2)  return false;  } else {  if (!compareGraphs(n1 n2 visited))  return false;  }  }  return true; } // Driver Code const original = buildGraph(); // Clone the graph using DFS const cloned = cloneGraph(original); // Compare original and cloned graph console.log(compareGraphs(original cloned) ? 'true' : 'false'); 

Produktion
true