Givet en n × n binær matrix sammen med bestående af 0s og 1s . Din opgave er at finde størrelsen på den største '+' form, der kun kan dannes vha 1s .
EN '+' formen består af en centercelle med fire arme, der strækker sig i alle fire retninger ( op ned til venstre og højre ), mens de forbliver inden for matrixgrænserne. Størrelsen af en '+' er defineret som det samlede antal celler danner det inklusive midten og alle arme.
Opgaven er at returnere maksimal størrelse af enhver gyldig '+' i sammen med . Hvis nej '+' kan dannes retur .
Eksempler:
Input: med = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Produktion: 9
Forklaring: Et '+' med en armlængde på 2 (2 celler i hver retning + 1 centrum) kan dannes i midten af måtten.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Samlet størrelse = (2 × 4) + 1 = 9
Input: med = [ [0 1 1] [0 0 1] [1 1 1] ]
Produktion: 1
Forklaring: Et '+' med en armlængde på 0 (0 celler i hver retning + 1 centrum) kan dannes med en hvilken som helst af 1'erne.Input: med = [ [0] ]
Produktion:
Forklaring: Ingen '+'-tegn kan dannes.
[Naiv tilgang] - Betragt hvert punkt som centrum - O(n^4) Tid og O(n^4) Rum
Gå gennem matrixcellerne én efter én. Consider every traversed point as center of a plus and find the size of the +. For hvert element krydser vi venstre højre nede og op. Det værste tilfælde i denne løsning sker, når vi har alle 1'ere.
[Forventet tilgang] - Forberegn 4 arrays - O(n^2) Tid og O(n^2) Rum
De ide er at opretholde fire hjælpematricer venstre[][] højre[][] top[][] bund[][] at gemme på hinanden følgende 1'ere i alle retninger. For hver celle (i j) i inputmatrixen gemmer vi nedenstående oplysninger i disse fire matricer -
- venstre(i j) gemmer det maksimale antal på hinanden følgende 1'ere til venstre af celle (i j) inklusive celle (i j).
- højre (i j) gemmer det maksimale antal på hinanden følgende 1'ere til højre af celle (i j) inklusive celle (i j).
- top(i j) gemmer maksimalt antal på hinanden følgende 1'ere ved top af celle (i j) inklusive celle (i j).
- bund(i j) gemmer maksimalt antal på hinanden følgende 1'ere ved bund af celle (i j) inklusive celle (i j).
Efter beregning af værdi for hver celle i ovenstående matricer største'+' ville være dannet af en celle af inputmatrix, der har maksimal værdi ved at overveje minimum af ( venstre(i j) højre(i j) top(i j) bund(i j) )
Vi kan bruge Dynamisk programmering at beregne den samlede mængde af på hinanden følgende 1'ere i hver retning:
hvis mat(i j) == 1
venstre(i j) = venstre(i j - 1) + 1else left(i j) = 0
hvis mat(i j) == 1
top(i j) = top(i - 1 j) + 1;andet top(i j) = 0;
hvis mat(i j) == 1
bund(i j) = bund(i + 1 j) + 1;ellers bund(i j) = 0;
hvis mat(i j) == 1
højre(i j) = højre(i j + 1) + 1;andet højre(i j) = 0;
Nedenfor er implementeringen af ovenstående tilgang:
C++// C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include using namespace std; int findLargestPlus(vector<vector<int>> &mat) { int n = mat.size(); vector<vector<int>> left(n vector<int>(n 0)); vector<vector<int>> right(n vector<int>(n 0)); vector<vector<int>> top(n vector<int>(n 0)); vector<vector<int>> bottom(n vector<int>(n 0)); // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = min({left[i][j] right[i][j] top[i][j] bottom[i][j]}); maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } int main() { // Hardcoded input matrix vector<vector<int>> mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; cout << findLargestPlus(mat) << endl; return 0; }
Java // Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG { static int findLargestPlus(int[][] mat) { int n = mat.length; int[][] left = new int[n][n]; int[][] right = new int[n][n]; int[][] top = new int[n][n]; int[][] bottom = new int[n][n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = Math.min(Math.min(left[i][j] right[i][j]) Math.min(top[i][j] bottom[i][j])); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void main(String[] args) { // Hardcoded input matrix int[][] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; System.out.println(findLargestPlus(mat)); } }
Python # Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus(mat): n = len(mat) left = [[0] * n for i in range(n)] right = [[0] * n for i in range(n)] top = [[0] * n for i in range(n)] bottom = [[0] * n for i in range(n)] # Fill left and top matrices for i in range(n): for j in range(n): if mat[i][j] == 1: left[i][j] = 1 if j == 0 else left[i][j - 1] + 1 top[i][j] = 1 if i == 0 else top[i - 1][j] + 1 # Fill right and bottom matrices for i in range(n - 1 -1 -1): for j in range(n - 1 -1 -1): if mat[i][j] == 1: right[i][j] = 1 if j == n - 1 else right[i][j + 1] + 1 bottom[i][j] = 1 if i == n - 1 else bottom[i + 1][j] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range(n): for j in range(n): if mat[i][j] == 1: armLength = min(left[i][j] right[i][j] top[i][j] bottom[i][j]) maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1) return maxPlusSize if __name__ == '__main__': # Hardcoded input matrix mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ] print(findLargestPlus(mat))
C# // C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System; class GfG { static int FindLargestPlus(int[] mat) { int n = mat.GetLength(0); int[] left = new int[n n]; int[] right = new int[n n]; int[] top = new int[n n]; int[] bottom = new int[n n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { left[i j] = (j == 0) ? 1 : left[i j - 1] + 1; top[i j] = (i == 0) ? 1 : top[i - 1 j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i j] == 1) { right[i j] = (j == n - 1) ? 1 : right[i j + 1] + 1; bottom[i j] = (i == n - 1) ? 1 : bottom[i + 1 j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { int armLength = Math.Min(Math.Min(left[i j] right[i j]) Math.Min(top[i j] bottom[i j])); maxPlusSize = Math.Max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void Main() { // Hardcoded input matrix int[] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; Console.WriteLine(FindLargestPlus(mat)); } }
JavaScript // JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus(mat) { let n = mat.length; let left = Array.from({ length: n } () => Array(n).fill(0)); let right = Array.from({ length: n } () => Array(n).fill(0)); let top = Array.from({ length: n } () => Array(n).fill(0)); let bottom = Array.from({ length: n } () => Array(n).fill(0)); // Fill left and top matrices for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { left[i][j] = (j === 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i === 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (let i = n - 1; i >= 0; i--) { for (let j = n - 1; j >= 0; j--) { if (mat[i][j] === 1) { right[i][j] = (j === n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i === n - 1) ? 1 : bottom[i + 1][j] + 1; } } } let maxPlusSize = 0; // Compute the maximum '+' size for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { let armLength = Math.min(left[i][j] right[i][j] top[i][j] bottom[i][j]); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } // Hardcoded input matrix let mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]; console.log(findLargestPlus(mat));
Produktion
9
Tidskompleksitet: O(n²) på grund af fire gennemløb for at beregne retningsmatricerne og et sidste gennemløb for at bestemme det største '+'. Hver gang tager O(n²) tid, hvilket fører til en samlet kompleksitet på O(n²).
Rumkompleksitet: O(n²) på grund af fire hjælpematricer (venstre højre øverst nederst), der bruger O(n²) ekstra plads.