logo

Konverter et binært træ til en cirkulær dobbeltlinkliste

Prøv det på GfG Practice træ til listen' title= #practiceLinkDiv { display: ingen !important; }

Givet en Binært træ konverter det til en Cirkulær dobbeltforbundet liste (På plads).  

  • Venstre og højre pointere i noder skal bruges som henholdsvis forrige og næste pointer i den konverterede Circular Linked List.
  • Rækkefølgen af ​​noder i listen skal være den samme som i Inorder for det givne binære træ.
  • Den første knude for Inorder-gennemløb skal være hovedknudepunktet på den cirkulære liste.

Eksempler:



' title=

Anbefalet praksis Binært træ til CDLL Prøv det!

Konverter et binært træ til en cirkulær dobbeltlinkliste ved hjælp af rekursion:

Ideen er at lave en generel funktion, der sammenkæder to givne cirkulære dobbeltlister

Følg nedenstående trin for at løse problemet:



  • Konverter det venstre undertræ rekursivt til en cirkulær DLL. Lad den konverterede liste være venstreliste .
  • Konverter det højre undertræ rekursivt til en cirkulær DLL. Lad den konverterede liste være højreliste
  • Lav en cirkulær sammenkædet liste over træets rødder og få venstre og højre rod til at pege på sig selv. 
  • Sammenkæd venstreliste med listen over den enkelte rodknude. 
  • Sammenknyt listen produceret i trin ovenfor med højreliste .

Note: Ovenstående fremgangsmåde krydser træet på en Postorder-måde. Vi kan også krydse på en uorden måde. Vi kan først sammenkæde venstre undertræ og rod og derefter gentage for det højre undertræ og sammenkæde resultatet med venstre rod sammenkædning.

Hvordan sammenkæder to cirkulære DLL'er?  

  • Få den sidste node på venstre liste. Hentning af den sidste node er en O(1)-operation, da den forrige pointer på hovedet peger på den sidste node på listen.
  • Forbind den med den første node på den højre liste
  • Få den sidste node på den anden liste
  • Forbind det med listens hoved.

Nedenfor er implementeringer af ovenstående idé:



C++
// C++ Program to convert a Binary Tree // to a Circular Doubly Linked List #include    using namespace std; // To represents a node of a Binary Tree struct Node {  struct Node *left *right;  int data; }; // A function that appends rightList at the end // of leftList. Node* concatenate(Node* leftList Node* rightList) {  // If either of the list is empty  // then return the other list  if (leftList == NULL)  return rightList;  if (rightList == NULL)  return leftList;  // Store the last Node of left List  Node* leftLast = leftList->left;  // Store the last Node of right List  Node* rightLast = rightList->left;  // Connect the last node of Left List  // with the first Node of the right List  leftLast->right = rightList;  rightList->left = leftLast;  // Left of first node points to  // the last node in the list  leftList->left = rightLast;  // Right of last node refers to the first  // node of the List  rightLast->right = leftList;  return leftList; } // Function converts a tree to a circular Linked List // and then returns the head of the Linked List Node* bTreeToCList(Node* root) {  if (root == NULL)  return NULL;  // Recursively convert left and right subtrees  Node* left = bTreeToCList(root->left);  Node* right = bTreeToCList(root->right);  // Make a circular linked list of single node  // (or root). To do so make the right and  // left pointers of this node point to itself  root->left = root->right = root;  // Step 1 (concatenate the left list with the list  // with single node i.e. current node)  // Step 2 (concatenate the returned list with the  // right List)  return concatenate(concatenate(left root) right); } // Display Circular Link List void displayCList(Node* head) {  cout << 'Circular Linked List is :n';  Node* itr = head;  do {  cout << itr->data << ' ';  itr = itr->right;  } while (head != itr);  cout << 'n'; } // Create a new Node and return its address Node* newNode(int data) {  Node* temp = new Node();  temp->data = data;  temp->left = temp->right = NULL;  return temp; } // Driver Program to test above function int main() {  Node* root = newNode(10);  root->left = newNode(12);  root->right = newNode(15);  root->left->left = newNode(25);  root->left->right = newNode(30);  root->right->left = newNode(36);  Node* head = bTreeToCList(root);  displayCList(head);  return 0; } // This code is contributed by Aditya Kumar (adityakumar129) 
C
// C Program to convert a Binary Tree // to a Circular Doubly Linked List #include  #include  // To represents a node of a Binary Tree typedef struct Node {  struct Node *left *right;  int data; } Node; // A function that appends rightList at the end // of leftList. Node* concatenate(Node* leftList Node* rightList) {  // If either of the list is empty  // then return the other list  if (leftList == NULL)  return rightList;  if (rightList == NULL)  return leftList;  // Store the last Node of left List  Node* leftLast = leftList->left;  // Store the last Node of right List  Node* rightLast = rightList->left;  // Connect the last node of Left List  // with the first Node of the right List  leftLast->right = rightList;  rightList->left = leftLast;  // Left of first node points to  // the last node in the list  leftList->left = rightLast;  // Right of last node refers to the first  // node of the List  rightLast->right = leftList;  return leftList; } // Function converts a tree to a circular Linked List // and then returns the head of the Linked List Node* bTreeToCList(Node* root) {  if (root == NULL)  return NULL;  // Recursively convert left and right subtrees  Node* left = bTreeToCList(root->left);  Node* right = bTreeToCList(root->right);  // Make a circular linked list of single node  // (or root). To do so make the right and  // left pointers of this node point to itself  root->left = root->right = root;  // Step 1 (concatenate the left list with the list  // with single node i.e. current node)  // Step 2 (concatenate the returned list with the  // right List)  return concatenate(concatenate(left root) right); } // Display Circular Link List void displayCList(Node* head) {  printf('Circular Linked List is :n');  Node* itr = head;  do {  printf('%d ' itr->data);  itr = itr->right;  } while (head != itr);  printf('n'); } // Create a new Node and return its address Node* newNode(int data) {  Node* temp = (Node*)malloc(sizeof(Node));  temp->data = data;  temp->left = temp->right = NULL;  return temp; } // Driver Program to test above function int main() {  Node* root = newNode(10);  root->left = newNode(12);  root->right = newNode(15);  root->left->left = newNode(25);  root->left->right = newNode(30);  root->right->left = newNode(36);  Node* head = bTreeToCList(root);  displayCList(head);  return 0; } // This code is contributed by Aditya Kumar (adityakumar129) 
Java
// Java Program to convert a Binary Tree to a // Circular Doubly Linked List // Node class represents a Node of a Tree class Node {  int val;  Node left right;  public Node(int val)  {  this.val = val;  left = right = null;  } } // A class to represent a tree class Tree {  Node root;  public Tree() { root = null; }  // concatenate both the lists and returns the head  // of the List  public Node concatenate(Node leftList Node rightList)  {  // If either of the list is empty then  // return the other list  if (leftList == null)  return rightList;  if (rightList == null)  return leftList;  // Store the last Node of left List  Node leftLast = leftList.left;  // Store the last Node of right List  Node rightLast = rightList.left;  // Connect the last node of Left List  // with the first Node of the right List  leftLast.right = rightList;  rightList.left = leftLast;  // left of first node refers to  // the last node in the list  leftList.left = rightLast;  // Right of last node refers to the first  // node of the List  rightLast.right = leftList;  // Return the Head of the List  return leftList;  }  // Method converts a tree to a circular  // Link List and then returns the head  // of the Link List  public Node bTreeToCList(Node root)  {  if (root == null)  return null;  // Recursively convert left and right subtrees  Node left = bTreeToCList(root.left);  Node right = bTreeToCList(root.right);  // Make a circular linked list of single node  // (or root). To do so make the right and  // left pointers of this node point to itself  root.left = root.right = root;  // Step 1 (concatenate the left list with the list  // with single node i.e. current node)  // Step 2 (concatenate the returned list with the  // right List)  return concatenate(concatenate(left root) right);  }  // Display Circular Link List  public void display(Node head)  {  System.out.println('Circular Linked List is :');  Node itr = head;  do {  System.out.print(itr.val + ' ');  itr = itr.right;  } while (itr != head);  System.out.println();  } } // Driver Code class Main {  public static void main(String args[])  {  // Build the tree  Tree tree = new Tree();  tree.root = new Node(10);  tree.root.left = new Node(12);  tree.root.right = new Node(15);  tree.root.left.left = new Node(25);  tree.root.left.right = new Node(30);  tree.root.right.left = new Node(36);  // head refers to the head of the Link List  Node head = tree.bTreeToCList(tree.root);  // Display the Circular LinkedList  tree.display(head);  } } 
Python3
# Python3 Program to convert a Binary # Tree to a Circular Doubly Linked List class newNode: def __init__(self data): self.data = data self.left = self.right = None # A function that appends rightList # at the end of leftList. def concatenate(leftList rightList): # If either of the list is empty # then return the other list if (leftList == None): return rightList if (rightList == None): return leftList # Store the last Node of left List leftLast = leftList.left # Store the last Node of right List rightLast = rightList.left # Connect the last node of Left List # with the first Node of the right List leftLast.right = rightList rightList.left = leftLast # Left of first node points to # the last node in the list leftList.left = rightLast # Right of last node refers to # the first node of the List rightLast.right = leftList return leftList # Function converts a tree to a circular # Linked List and then returns the head # of the Linked List def bTreeToCList(root): if (root == None): return None # Recursively convert left and # right subtrees left = bTreeToCList(root.left) right = bTreeToCList(root.right) # Make a circular linked list of single # node (or root). To do so make the # right and left pointers of this node # point to itself root.left = root.right = root # Step 1 (concatenate the left list # with the list with single # node i.e. current node) # Step 2 (concatenate the returned list # with the right List) return concatenate(concatenate(left root) right) # Display Circular Link List def displayCList(head): print('Circular Linked List is :') itr = head first = 1 while (head != itr or first): print(itr.data end=' ') itr = itr.right first = 0 print() # Driver Code if __name__ == '__main__': root = newNode(10) root.left = newNode(12) root.right = newNode(15) root.left.left = newNode(25) root.left.right = newNode(30) root.right.left = newNode(36) head = bTreeToCList(root) displayCList(head) # This code is contributed by PranchalK 
C#
// C# Program to convert a Binary Tree // to a Circular Doubly Linked List using System; // Node class represents a Node of a Tree public class Node {  public int val;  public Node left right;  public Node(int val)  {  this.val = val;  left = right = null;  } } // A class to represent a tree public class Tree {  internal Node root;  public Tree() { root = null; }  // concatenate both the lists  // and returns the head of the List  public virtual Node concatenate(Node leftList  Node rightList)  {  // If either of the list is empty  // then return the other list  if (leftList == null) {  return rightList;  }  if (rightList == null) {  return leftList;  }  // Store the last Node of left List  Node leftLast = leftList.left;  // Store the last Node of right List  Node rightLast = rightList.left;  // Connect the last node of Left List  // with the first Node of the right List  leftLast.right = rightList;  rightList.left = leftLast;  // left of first node refers to  // the last node in the list  leftList.left = rightLast;  // Right of last node refers to  // the first node of the List  rightLast.right = leftList;  // Return the Head of the List  return leftList;  }  // Method converts a tree to a circular  // Link List and then returns the head  // of the Link List  public virtual Node bTreeToCList(Node root)  {  if (root == null) {  return null;  }  // Recursively convert left  // and right subtrees  Node left = bTreeToCList(root.left);  Node right = bTreeToCList(root.right);  // Make a circular linked list of single  // node (or root). To do so make the  // right and left pointers of this node  // point to itself  root.left = root.right = root;  // Step 1 (concatenate the left list with  // the list with single node  // i.e. current node)  // Step 2 (concatenate the returned list  // with the right List)  return concatenate(concatenate(left root) right);  }  // Display Circular Link List  public virtual void display(Node head)  {  Console.WriteLine('Circular Linked List is :');  Node itr = head;  do {  Console.Write(itr.val + ' ');  itr = itr.right;  } while (itr != head);  Console.WriteLine();  } } // Driver Code public class GFG {  public static void Main(string[] args)  {  // Build the tree  Tree tree = new Tree();  tree.root = new Node(10);  tree.root.left = new Node(12);  tree.root.right = new Node(15);  tree.root.left.left = new Node(25);  tree.root.left.right = new Node(30);  tree.root.right.left = new Node(36);  // head refers to the head of the Link List  Node head = tree.bTreeToCList(tree.root);  // Display the Circular LinkedList  tree.display(head);  } } // This code is contributed by Shrikant13 
JavaScript
<script> // javascript Program to convert a Binary Tree to a // Circular Doubly Linked List // Node class represents a Node of a Tree class Node {  constructor(val) {  this.val = val;  this.left = null;  this.right = null;  } } // A class to represent a   var root = null;  // concatenate both the lists and returns the head  // of the List  function concatenate(leftList rightList) {  // If either of the list is empty then  // return the other list  if (leftList == null)  return rightList;  if (rightList == null)  return leftList;  // Store the last Node of left List  var leftLast = leftList.left;  // Store the last Node of right List  var rightLast = rightList.left;  // Connect the last node of Left List  // with the first Node of the right List  leftLast.right = rightList;  rightList.left = leftLast;  // left of first node refers to  // the last node in the list  leftList.left = rightLast;  // Right of last node refers to the first  // node of the List  rightLast.right = leftList;  // Return the Head of the List  return leftList;  }  // Method converts a to a circular  // Link List and then returns the head  // of the Link List  function bTreeToCList(root) {  if (root == null)  return null;  // Recursively convert left and right subtrees  var left = bTreeToCList(root.left);  var right = bTreeToCList(root.right);  // Make a circular linked list of single node  // (or root). To do so make the right and  // left pointers of this node point to itself  root.left = root.right = root;  // Step 1 (concatenate the left list with the list  // with single node i.e. current node)  // Step 2 (concatenate the returned list with the  // right List)  return concatenate(concatenate(left root) right);  }  // Display Circular Link List  function display(head) {  document.write('Circular Linked List is :  
'
); var itr = head; do { document.write(itr.val + ' '); itr = itr.right; } while (itr != head); document.write(); } // Driver Code // Build the root = new Node(10); root.left = new Node(12); root.right = new Node(15); root.left.left = new Node(25); root.left.right = new Node(30); root.right.left = new Node(36); // head refers to the head of the Link List var head = bTreeToCList(root); // Display the Circular LinkedList display(head); // This code contributed by umadevi9616 </script>

Produktion
Circular Linked List is : 25 12 30 10 36 15 

Tidskompleksitet: PÅ) Da hver node højst besøges én gang.
Hjælpeplads: O(log N) Det ekstra mellemrum bruges i rekursionsopkaldsstakken, som kan vokse op til en maksimal størrelse på logN, da det er et binært træ.

Konverter et binært træ til en cirkulær dobbeltlinkliste ved inorder-gennemgang:

Ideen er at lave i rækkefølge traversering af det binære træ. Hold styr på den tidligere besøgte node i en variabel sige, mens du laver inorder-gennemgang forrige . For hver besøgte node gør det til det næste af forrige og sæt forrige af denne node som forrige .

Følg nedenstående trin for at løse problemet:

  • Konverter først det binære træ til en dobbeltlinket liste, se dette indlæg Konverter et givet binært træ til dobbeltforbundet liste .
  • Konverter nu denne dobbeltforbundne liste til cirkulær dobbeltkædet liste ved at forbinde første og sidste node.

Nedenfor er implementeringen af ​​ovenstående tilgang.

C++
// A C++ program for in-place conversion of Binary Tree to // CDLL #include    using namespace std; /* A binary tree node has - data  left and right pointers  */ struct Node {  int data;  Node* left;  Node* right; }; // A utility function that converts given binary tree to // a doubly linked list // root --> the root of the binary tree // head --> head of the created doubly linked list Node* BTree2DoublyLinkedList(Node* root Node** head) {  // Base case  if (root == NULL)  return root;  // Initialize previously visited node as NULL. This is  // static so that the same value is accessible in all  // recursive calls  static Node* prev = NULL;  // Recursively convert left subtree  BTree2DoublyLinkedList(root->left head);  // Now convert this node  if (prev == NULL)  *head = root;  else {  root->left = prev;  prev->right = root;  }  prev = root;  // Finally convert right subtree  BTree2DoublyLinkedList(root->right head);  return prev; } // A simple recursive function to convert a given Binary // tree to Circular Doubly Linked List using a utility // function root --> Root of Binary Tree tail --> Pointer to // tail node of created circular doubly linked list Node* BTree2CircularDoublyLinkedList(Node* root) {  Node* head = NULL;  Node* tail = BTree2DoublyLinkedList(root &head);  // make the changes to convert a DLL to CDLL  tail->right = head;  head->left = tail;  // return the head of the created CDLL  return head; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ Node* newNode(int data) {  Node* new_node = new Node;  new_node->data = data;  new_node->left = new_node->right = NULL;  return (new_node); } /* Function to print nodes in a given circular doubly linked  * list */ void printList(Node* head) {  if (head == NULL)  return;  Node* ptr = head;  do {  cout << ptr->data << ' ';  ptr = ptr->right;  } while (ptr != head); } /* Driver program to test above functions*/ int main() {  // Let us create the tree shown in above diagram  Node* root = newNode(10);  root->left = newNode(12);  root->right = newNode(15);  root->left->left = newNode(25);  root->left->right = newNode(30);  root->right->left = newNode(36);  // Convert to DLL  Node* head = BTree2CircularDoublyLinkedList(root);  // Print the converted list  printList(head);  return 0; } // This code was contributed by Abhijeet // Kumar(abhijeet19403) 
Java
// A Java program for in-place conversion of Binary Tree to // CDLL // A binary tree node has - data left pointer and right // pointer class Node {  int data;  Node left right;  public Node(int data)  {  this.data = data;  left = right = null;  } } class BinaryTree {  Node root;  // head --> Pointer to head node of created doubly  // linked list  Node head;  // Initialize previously visited node as NULL. This is  // static so that the same value is accessible in all  // recursive calls  static Node prev = null;  // A simple utility recursive function to convert a  // given Binary tree to Doubly Linked List root --> Root  // of Binary Tree  void BTree2DoublyLinkedList(Node root)  {  // Base case  if (root == null)  return;  // Recursively convert left subtree  BTree2DoublyLinkedList(root.left);  // Now convert this node  if (prev == null)  head = root;  else {  root.left = prev;  prev.right = root;  }  prev = root;  // Finally convert right subtree  BTree2DoublyLinkedList(root.right);  }  // A simple function to convert a given binary tree to  // Circular doubly linked list  // using a utility function  void BTree2CircularDoublyLinkedList(Node root)  {  BTree2DoublyLinkedList(root);  // make the changes to convert a DLL to CDLL  prev.right = head;  head.left = prev;  }  /* Function to print nodes in a given doubly linked list  */  void printList(Node node)  {  if (node == null)  return;  Node curr = node;  do {  System.out.print(curr.data + ' ');  curr = curr.right;  } while (curr != node);  }  // Driver program to test above functions  public static void main(String[] args)  {  // Let us create the tree as shown in above diagram  BinaryTree tree = new BinaryTree();  tree.root = new Node(10);  tree.root.left = new Node(12);  tree.root.right = new Node(15);  tree.root.left.left = new Node(25);  tree.root.left.right = new Node(30);  tree.root.right.left = new Node(36);  // convert to DLL  tree.BTree2CircularDoublyLinkedList(tree.root);  // Print the converted List  tree.printList(tree.head);  } } // This code has been contributed by Abhijeet // Kumar(abhijeet19403) 
Python
# A python program for in-place conversion of Binary Tree to DLL # A binary tree node has data left pointers and right pointers class Node: def __init__(self val): self.data = val self.left = None self.right = None # head --> Pointer to head node of created doubly linked list head = None # Initialize previously visited node as NULL. This is # so that the same value is accessible in all recursive # calls prev = None # A simple recursive function to convert a given Binary tree # to Doubly Linked List # root --> Root of Binary Tree def BinaryTree2DoubleLinkedList(root): # Base case if (root == None): return # Recursively convert left subtree BinaryTree2DoubleLinkedList(root.left) # Now convert this node global prev head if (prev == None): head = root else: root.left = prev prev.right = root prev = root # Finally convert right subtree BinaryTree2DoubleLinkedList(root.right) # Function to print nodes in a given doubly linked list def printList(node): while (node != None): print(node.data) node = node.right # Driver program to test above functions # Let us create the tree as shown in above diagram root = Node(10) root.left = Node(12) root.right = Node(15) root.left.left = Node(25) root.left.right = Node(30) root.right.left = Node(36) # convert to DLL BinaryTree2DoubleLinkedList(root) # Print the converted List printList(head) # This code is contributed by adityamaharshi21. 
C#
// A C# program for in-place conversion of Binary Tree to // CDLL using System; public class Node {  public int data;  public Node left right;  public Node(int data)  {  this.data = data;  left = right = null;  } } public class BinaryTree {  Node root;  // head --> Pointer to head node of created doubly  // linked list  Node head;  // Initialize previously visited node as NULL. This is  // static so that the same value is accessible in all  // recursive calls  static Node prev = null;  // A simple utility recursive function to convert a  // given Binary tree to Doubly Linked List root --> Root  // of Binary Tree  void BTree2DoublyLinkedList(Node root)  {  // Base case  if (root == null)  return;  // Recursively convert left subtree  BTree2DoublyLinkedList(root.left);  // Now convert this node  if (prev == null)  head = root;  else {  root.left = prev;  prev.right = root;  }  prev = root;  // Finally convert right subtree  BTree2DoublyLinkedList(root.right);  }  // A simple function to convert a given binary tree to  // Circular doubly linked list  // using a utility function  void BTree2CircularDoublyLinkedList(Node root)  {  BTree2DoublyLinkedList(root);  // make the changes to convert a DLL to CDLL  prev.right = head;  head.left = prev;  }  /* Function to print nodes in a given doubly linked list  */  void printList(Node node)  {  if (node == null)  return;  Node curr = node;  do {  Console.Write(curr.data + ' ');  curr = curr.right;  } while (curr != node);  }  static public void Main()  {  // Let us create the tree as shown in above diagram  BinaryTree tree = new BinaryTree();  tree.root = new Node(10);  tree.root.left = new Node(12);  tree.root.right = new Node(15);  tree.root.left.left = new Node(25);  tree.root.left.right = new Node(30);  tree.root.right.left = new Node(36);  // convert to DLL  tree.BTree2CircularDoublyLinkedList(tree.root);  // Print the converted List  tree.printList(tree.head);  } } // This code is contributed by lokesh(lokeshmvs21). 
JavaScript
// A javascript program for in-place conversion of Binary Tree to DLL // A binary tree node has data left pointers and right pointers class Node {  constructor(val) {  this.data = val;  this.left = null;  this.right = null;  } } var root; // head --> Pointer to head node of created doubly linked list var head; // Initialize previously visited node as NULL. This is // so that the same value is accessible in all recursive // calls var prev = null; // A simple recursive function to convert a given Binary tree // to Doubly Linked List // root --> Root of Binary Tree function BinaryTree2DoubleLinkedList(root) {  // Base case  if (root == null)  return;    // Recursively convert left subtree  BinaryTree2DoubleLinkedList(root.left);    // Now convert this node  if (prev == null)  head = root;  else {  root.left = prev;  prev.right = root;  }  prev = root;    // Finally convert right subtree  BinaryTree2DoubleLinkedList(root.right); } /* Function to print nodes in a given doubly linked list */ function printList(node) {  while (node != null) {  console.log(node.data + ' ');  node = node.right;  } } // Driver program to test above functions // Let us create the tree as shown in above diagram root = new Node(10); root.left = new Node(12); root.right = new Node(15); root.left.left = new Node(25); root.left.right = new Node(30); root.right.left = new Node(36); // convert to DLL BinaryTree2DoubleLinkedList(root); // Print the converted List printList(head); // This code is contributed by ishankhandelwals. 

Produktion
25 12 30 10 36 15 

Tidskompleksitet: O(N) Da hver node højst besøges én gang.
Hjælpeplads: O(log N) Den ekstra plads bruges i den rekursive funktionsopkaldsstak, som kan vokse op til en maksimal størrelse på logN.

Denne tilgang blev bidraget af Abhijeet Kumar