Givet et heltal n repræsenterer antallet af cifre. Opgaven er at udskrive alle n-cifrede tal sådan at den absolutte forskel mellem summen af cifre ved lige positioner og ulige positioner er nøjagtig 1 .
Note : Nummeret skal ikke starte med (førende nuller er ikke tilladt).
Eksempler:
Input : n = 2
Produktion : 10 12 21 23 32 34 43 45 54 56 65 67 76 78 87 89 98
Input : n = 3
Produktion : 100 111 120 122 131 133 142 144 153 155 164 166 175 177 186
188 197 199 210 221 230 232 241 243 252 254 263 265 274 276 285
287 296 298 320 331 340 342 351 353 362 364 373 375 384 386 395
397 430 441 450 452 461 463 472 474 483 485 494 496 540 551 560
562 571 573 582 584 593 595 650 661 670 672 681 683 692 694 760
771 780 782 791 793 870 881 890 892 980 991
[Forventet tilgang] Brug af rekursion
C++Tanken er at rekursivt generere alle n-cifrede tal, mens sporing af summen af cifre kl endog og ulige positioner ved hjælp af to variable. For en given position udfylder vi den med alle cifre fra 0 til 9, og baseret på om den nuværende position er lige eller ulige øger vi lige eller ulige sum. Vi håndterer førende 0'ere sager separat, da de ikke tælles som cifre.
Vi har fulgt nul-baseret nummerering som array-indekser. dvs. førende (længst til venstre) ciffer anses for at være til stede på lige position, og ciffer ved siden af det anses for at være til stede på en lige position og så videre.
// C++ program to print all n-digit numbers such that // the absolute difference between the sum of digits at // even and odd positions is 1 #include using namespace std; // Recursive function to generate numbers void findNDigitNumsUtil(int pos int n int num int evenSum int oddSum vector<int> &res) { // If number is formed if (pos == n) { // Check absolute difference condition if (abs(evenSum - oddSum) == 1) { res.push_back(num); } return; } // Digits to consider at current position for (int d = 0; d <= 9; d++) { // Skip leading 0 if (pos == 0 && d == 0) { continue; } // If position is even (0-based) add to evenSum if (pos % 2 == 0) { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum + d oddSum res); } // If position is odd add to oddSum else { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum oddSum + d res); } } } // Function to prepare and collect valid numbers vector<int> findNDigitNums(int n) { vector<int> res; findNDigitNumsUtil(0 n 0 0 0 res); return res; } // Driver code int main() { int n = 2; vector<int> res = findNDigitNums(n); for (int i = 0; i < res.size(); i++) { cout << res[i] << ' '; } return 0; }
Java // Java program to print all n-digit numbers such that // the absolute difference between the sum of digits at // even and odd positions is 1 import java.util.*; class GfG { // Recursive function to generate numbers static void findNDigitNumsUtil(int pos int n int num int evenSum int oddSum ArrayList<Integer> res) { // If number is formed if (pos == n) { // Check absolute difference condition if (Math.abs(evenSum - oddSum) == 1) { res.add(num); } return; } // Digits to consider at current position for (int d = 0; d <= 9; d++) { // Skip leading 0 if (pos == 0 && d == 0) { continue; } // If position is even (0-based) add to evenSum if (pos % 2 == 0) { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum + d oddSum res); } // If position is odd add to oddSum else { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum oddSum + d res); } } } // Function to prepare and collect valid numbers static ArrayList<Integer> findNDigitNums(int n) { ArrayList<Integer> res = new ArrayList<>(); findNDigitNumsUtil(0 n 0 0 0 res); return res; } // Driver code public static void main(String[] args) { int n = 2; ArrayList<Integer> res = findNDigitNums(n); // Print all collected valid numbers for (int i = 0; i < res.size(); i++) { System.out.print(res.get(i) + ' '); } } }
Python # Python program to print all n-digit numbers such that # the absolute difference between the sum of digits at # even and odd positions is 1 # Recursive function to generate numbers def findNDigitNumsUtil(pos n num evenSum oddSum res): # If number is formed if pos == n: # Check absolute difference condition if abs(evenSum - oddSum) == 1: res.append(num) return # Digits to consider at current position for d in range(10): # Skip leading 0 if pos == 0 and d == 0: continue # If position is even (0-based) add to evenSum if pos % 2 == 0: findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum + d oddSum res) # If position is odd add to oddSum else: findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum oddSum + d res) # Function to prepare and collect valid numbers def findNDigitNums(n): res = [] findNDigitNumsUtil(0 n 0 0 0 res) return res # Driver code if __name__ == '__main__': n = 2 res = findNDigitNums(n) # Print all collected valid numbers for i in range(len(res)): print(res[i] end=' ')
C# // C# program to print all n-digit numbers such that // the absolute difference between the sum of digits at // even and odd positions is 1 using System; using System.Collections.Generic; class GfG { // Recursive function to generate numbers static void findNDigitNumsUtil(int pos int n int num int evenSum int oddSum List<int> res) { // If number is formed if (pos == n) { // Check absolute difference condition if (Math.Abs(evenSum - oddSum) == 1) { res.Add(num); } return; } // Digits to consider at current position for (int d = 0; d <= 9; d++) { // Skip leading 0 if (pos == 0 && d == 0) { continue; } // If position is even (0-based) add to evenSum if (pos % 2 == 0) { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum + d oddSum res); } // If position is odd add to oddSum else { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum oddSum + d res); } } } // Function to prepare and collect valid numbers static List<int> findNDigitNums(int n) { List<int> res = new List<int>(); findNDigitNumsUtil(0 n 0 0 0 res); return res; } // Driver code public static void Main(string[] args) { int n = 2; List<int> res = findNDigitNums(n); // Print all collected valid numbers for (int i = 0; i < res.Count; i++) { Console.Write(res[i] + ' '); } } }
JavaScript // JavaScript program to print all n-digit numbers such that // the absolute difference between the sum of digits at // even and odd positions is 1 // Recursive function to generate numbers function findNDigitNumsUtil(pos n num evenSum oddSum res) { // If number is formed if (pos === n) { // Check absolute difference condition if (Math.abs(evenSum - oddSum) === 1) { res.push(num); } return; } // Digits to consider at current position for (let d = 0; d <= 9; d++) { // Skip leading 0 if (pos === 0 && d === 0) { continue; } // If position is even (0-based) add to evenSum if (pos % 2 === 0) { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum + d oddSum res); } // If position is odd add to oddSum else { findNDigitNumsUtil(pos + 1 n num * 10 + d evenSum oddSum + d res); } } } // Function to prepare and collect valid numbers function findNDigitNums(n) { let res = []; findNDigitNumsUtil(0 n 0 0 0 res); return res; } // Driver code let n = 2; let res = findNDigitNums(n); // Print all collected valid numbers for (let i = 0; i < res.length; i++) { process.stdout.write(res[i] + ' '); }
Produktion
10 12 21 23 32 34 43 45 54 56 65 67 76 78 87 89 98
Tidskompleksitet: O(9 × 10^(n-1)), da hvert ciffer har op til 10 valgmuligheder (undtagen det første, der har 9).
Rumkompleksitet: O(n + k) hvor n er rekursionsdybde og k er antallet af gyldige resultater.