Givet et binært træ, er opgaven at finde højden på træet. Træets højde er antallet af toppunkter i træet fra roden til den dybeste knude.
Bemærk: Højden af et tomt træ er 0 og højden af et træ med en enkelt knude er 1 .

Eksempel på binært træ
forbindelse java mysqlAnbefalet praksis Højde af binært træ Prøv det!
Beregn rekursivt højden af venstre og højre undertræer af en node og tildeler højde til noden som max af højden af to børn plus 1 . Se nedenfor pseudokoden og programmet for detaljer.
Illustration:
Overvej følgende træ:
Eksempel på træ
maxDepth(‘1’) = max(maxDepth(‘2’), maxDepth(‘3’)) + 1 = 2 + 1
fordi rekursivt
maxDepth('2') = max (maxDepth('4'), maxDepth('5')) + 1 = 1 + 1 og (da højden af både '4' og '5' er 1)
maxDepth('3') = 1mia khalifa alder
Følg nedenstående trin for at implementere ideen:
- Udfør rekursivt en dybde-først-søgning.
- Hvis træet er tomt, så returner 0
- Ellers gør du følgende
- Få den maksimale dybde af det venstre undertræ rekursivt, dvs. kald maxDepth (træ->venstre-undertræ)
- Få den maksimale dybde af det højre undertræ rekursivt, dvs. kald maxDepth (træ->højre-undertræ)
- Få maks. maks. dybder af venstre og højre undertræer og tilføje 1 til den for den aktuelle node.
-
- Retur max_depth.
Nedenfor er implementeringen af ovenstående tilgang:
C++
// C++ program to find height of tree> #include> using> namespace> std;> /* A binary tree node has data, pointer to left child> and a pointer to right child */> class> node {> public>:> >int> data;> >node* left;> >node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->venstre);> >int> rDepth = maxDepth(node->højre);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> given data and NULL left and right pointers. */> node* newNode(>int> data)> {> >node* Node =>new> node();> >Node->data = data;> >Node->venstre = NULL;> >Node->højre = NULL;> >return> (Node);> }> // Driver code> int> main()> {> >node* root = newNode(1);> >root->venstre = newNode(2);> >root->højre = newNode(3);> >root->venstre->venstre = newNode(4);> >root->venstre->højre = newNode(5);> >cout <<>'Height of tree is '> << maxDepth(root);> >return> 0;> }> // This code is contributed by Amit Srivastav> |
>
>
C
#include> #include> /* A binary tree node has data, pointer to left child> >and a pointer to right child */> struct> node {> >int> data;> >struct> node* left;> >struct> node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(>struct> node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->venstre);> >int> rDepth = maxDepth(node->højre);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> >given data and NULL left and right pointers. */> struct> node* newNode(>int> data)> {> >struct> node* node> >= (>struct> node*)>malloc>(>sizeof>(>struct> node));> >node->data = data;> >node->venstre = NULL;> >node->højre = NULL;> >return> (node);> }> int> main()> {> >struct> node* root = newNode(1);> >root->venstre = newNode(2);> >root->højre = newNode(3);> >root->venstre->venstre = newNode(4);> >root->venstre->højre = newNode(5);> >printf>(>'Height of tree is %d'>, maxDepth(root));> >getchar>();> >return> 0;> }> |
>
>
Java
// Java program to find height of tree> // A binary tree node> class> Node {> >int> data;> >Node left, right;> >Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0>;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth +>1>);> >else> >return> (rDepth +>1>);> >}> >}> >/* Driver program to test above functions */> >public> static> void> main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(>1>);> >tree.root.left =>new> Node(>2>);> >tree.root.right =>new> Node(>3>);> >tree.root.left.left =>new> Node(>4>);> >tree.root.left.right =>new> Node(>5>);> >System.out.println(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by Amit Srivastav> |
>
>
Python3
# Python3 program to find the maximum depth of tree> # A binary tree node> class> Node:> ># Constructor to create a new node> >def> __init__(>self>, data):> >self>.data>=> data> >self>.left>=> None> >self>.right>=> None> # Compute the 'maxDepth' of a tree -- the number of nodes> # along the longest path from the root node down to the> # farthest leaf node> def> maxDepth(node):> >if> node>is> None>:> >return> 0> >else>:> ># Compute the depth of each subtree> >lDepth>=> maxDepth(node.left)> >rDepth>=> maxDepth(node.right)> ># Use the larger one> >if> (lDepth>rDepth):> >return> lDepth>+>1> >else>:> >return> rDepth>+>1> # Driver program to test above function> root>=> Node(>1>)> root.left>=> Node(>2>)> root.right>=> Node(>3>)> root.left.left>=> Node(>4>)> root.left.right>=> Node(>5>)> print>(>'Height of tree is %d'> %> (maxDepth(root)))> # This code is contributed by Amit Srivastav> |
>
>
C#
// C# program to find height of tree> using> System;> // A binary tree node> public> class> Node {> >public> int> data;> >public> Node left, right;> >public> Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> public> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> >/* Driver code */> >public> static> void> Main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(1);> >tree.root.left =>new> Node(2);> >tree.root.right =>new> Node(3);> >tree.root.left.left =>new> Node(4);> >tree.root.left.right =>new> Node(5);> >Console.WriteLine(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by> // Correction done by Amit Srivastav> |
>
>
Javascript
> // JavaScript program to find height of tree> // A binary tree node> class Node> {> >constructor(item)> >{> >this>.data=item;> >this>.left=>this>.right=>null>;> >}> }> >let root;> > >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >function> maxDepth(node)> >{> >if> (node ==>null>)> >return> 0;> >else> >{> >/* compute the depth of each subtree */> >let lDepth = maxDepth(node.left);> >let rDepth = maxDepth(node.right);> > >/* use the larger one */> >if> (lDepth>rDepth)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> > >/* Driver program to test above functions */> > >root =>new> Node(1);> >root.left =>new> Node(2);> >root.right =>new> Node(3);> >root.left.left =>new> Node(4);> >root.left.right =>new> Node(5);> > >document.write(>'Height of tree is : '> +> >maxDepth(root));> // This code is contributed by rag2127> //Correction done by Amit Srivastav> > |
>
>
Produktion
Height of tree is 3>
Tidskompleksitet: O(N) (Se venligst indlægget vedr Trægennemgang for detaljer)
Hjælpeplads: O(N) på grund af rekursiv stak.
Find den maksimale dybde eller højde for et træ ved hjælp af Level Order Traversal :
Gør Level Order Traversal , mens du tilføjer noder på hvert niveau til Følg nedenstående trin for at implementere ideen:
- Kør gennem træet i niveaurækkefølge gennemgang fra rod .
- Initialiser en tom kø Q , en variabel dybde og skubbe rod , og tryk derefter nul ind i Q .
- Kør en mens sløjfe indtil Q er ikke tom.
- Opbevar det forreste element af Q og pop frontelementet ud.
- Hvis forsiden af Q er NUL øg derefter dybde en gang, og hvis køen ikke er tom, så tryk NUL ind i Q .
- Ellers hvis elementet ikke er det NUL så tjek efter det venstre og højre børn, og hvis de ikke er det NUL skubbe dem ind Q .
- Vend tilbage dybde .
Nedenfor er implementeringen af ovenstående tilgang:
java streng til heltal konverteringC++
#include>#include>using>namespace>std;>// A Tree node>struct>Node {>>int>key;>>struct>Node *left, *right;>};>// Utility function to create a new node>Node* newNode(>int>key)>{>>Node* temp =>new>Node;>>temp->nøgle = nøgle;>>temp->venstre = temp->højre = NULL;>>return>(temp);>}>/*Function to find the height(depth) of the tree*/>int>height(>struct>Node* root)>{>>// Initialising a variable to count the>>// height of tree>>int>depth = 0;>>queue q;>>// Pushing first level element along with NULL>>q.push(root);>>q.push(NULL);>>while>(!q.empty()) {>>Node* temp = q.front();>>q.pop();>>// When NULL encountered, increment the value>>if>(temp == NULL) {>>depth++;>>}>>// If NULL not encountered, keep moving>>if>(temp != NULL) {>>if>(temp->venstre) {>>q.push(temp->venstre);>>}>>if>(temp->højre) {>>q.push(temp->højre);>>}>>}>>// If queue still have elements left,>>// push NULL again to the queue.>>else>if>(!q.empty()) {>>q.push(NULL);>>}>>}>>return>depth;>}>// Driver program>int>main()>{>>// Let us create Binary Tree shown in above example>>Node* root = newNode(1);>>root->venstre = newNode(2);>>root->højre = newNode(3);>>root->venstre->venstre = newNode(4);>>root->venstre->højre = newNode(5);>>cout <<>'Height(Depth) of tree is: '><< height(root);>}>>>Java
// Java program for above approach>import>java.util.LinkedList;>import>java.util.Queue;>class>GFG {>>// A tree node structure>>static>class>Node {>>int>key;>>Node left;>>Node right;>>}>>// Utility function to create>>// a new node>>static>Node newNode(>int>key)>>{>>Node temp =>new>Node();>>temp.key = key;>>temp.left = temp.right =>null>;>>return>temp;>>}>>/*Function to find the height(depth) of the tree*/>>public>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>int>depth =>0>;>>Queue q =>new>LinkedList();>>// Pushing first level element along with null>>q.add(root);>>q.add(>null>);>>while>(!q.isEmpty()) {>>Node temp = q.peek();>>q.remove();>>// When null encountered, increment the value>>if>(temp ==>null>) {>>depth++;>>}>>// If null not encountered, keep moving>>if>(temp !=>null>) {>>if>(temp.left !=>null>) {>>q.add(temp.left);>>}>>if>(temp.right !=>null>) {>>q.add(temp.right);>>}>>}>>// If queue still have elements left,>>// push null again to the queue.>>else>if>(!q.isEmpty()) {>>q.add(>null>);>>}>>}>>return>depth;>>}>>// Driver Code>>public>static>void>main(String args[])>>{>>Node root = newNode(>1>);>>root.left = newNode(>2>);>>root.right = newNode(>3>);>>root.left.left = newNode(>4>);>>root.left.right = newNode(>5>);>>System.out.println(>'Height(Depth) of tree is: '>>+ height(root));>>}>}>// This code is contributed by jana_sayantan.>>>Python3
# Python code to implement the approach># A Tree node>class>Node:>>def>__init__(>self>):>>self>.key>=>0>>self>.left,>self>.right>=>None>,>None># Utility function to create a new node>def>newNode(key):>>temp>=>Node()>>temp.key>=>key>>temp.left, temp.right>=>None>,>None>>return>temp># Function to find the height(depth) of the tree>def>height(root):>># Initialising a variable to count the>># height of tree>>depth>=>0>>q>=>[]>># appending first level element along with None>>q.append(root)>>q.append(>None>)>>while>(>len>(q)>>0>):>>temp>=>q[>0>]>>q>=>q[>1>:]>># When None encountered, increment the value>>if>(temp>=>=>None>):>>depth>+>=>1>># If None not encountered, keep moving>>if>(temp !>=>None>):>>if>(temp.left):>>q.append(temp.left)>>if>(temp.right):>>q.append(temp.right)>># If queue still have elements left,>># append None again to the queue.>>elif>(>len>(q)>>0>):>>q.append(>None>)>>return>depth># Driver program># Let us create Binary Tree shown in above example>root>=>newNode(>1>)>root.left>=>newNode(>2>)>root.right>=>newNode(>3>)>root.left.left>=>newNode(>4>)>root.left.right>=>newNode(>5>)>print>(f>'Height(Depth) of tree is: {height(root)}'>)># This code is contributed by shinjanpatra>>>C#
// C# Program to find the Maximum Depth or Height of Binary Tree>using>System;>using>System.Collections.Generic;>// A Tree node>public>class>Node {>>public>int>data;>>public>Node left, right;>>public>Node(>int>item)>>{>>data = item;>>left =>null>;>>right =>null>;>>}>}>public>class>BinaryTree {>>Node root;>>// Function to find the height(depth) of the tree>>int>height()>>{>>// Initialising a variable to count the>>// height of tree>>int>depth = 0;>>Queue q =>new>Queue();>>// Pushing first level element along with NULL>>q.Enqueue(root);>>q.Enqueue(>null>);>>while>(q.Count != 0) {>>Node temp = q.Dequeue();>>// When NULL encountered, increment the value>>if>(temp ==>null>)>>depth++;>>// If NULL not encountered, keep moving>>if>(temp !=>null>) {>>if>(temp.left !=>null>) {>>q.Enqueue(temp.left);>>}>>if>(temp.right !=>null>) {>>q.Enqueue(temp.right);>>}>>}>>// If queue still have elements left,>>// push NULL again to the queue>>else>if>(q.Count != 0) {>>q.Enqueue(>null>);>>}>>}>>return>depth;>>}>>// Driver program>>public>static>void>Main()>>{>>// Let us create Binary Tree shown in above example>>BinaryTree tree =>new>BinaryTree();>>tree.root =>new>Node(1);>>tree.root.left =>new>Node(2);>>tree.root.right =>new>Node(3);>>tree.root.left.left =>new>Node(4);>>tree.root.left.right =>new>Node(5);>>Console.WriteLine(>'Height(Depth) of tree is: '>>+ tree.height());>>}>}>// This code is contributed by Yash Agarwal(yashagarwal2852002)>>>Javascript
>// JavaScript code to implement the approach>// A Tree node>class Node{>>constructor(){>>this>.key = 0>>this>.left =>null>>this>.right =>null>>}>}>// Utility function to create a new node>function>newNode(key){>>let temp =>new>Node()>>temp.key = key>>temp.left =>null>>temp.right =>null>>return>temp>}>// Function to find the height(depth) of the tree>function>height(root){>>// Initialising a variable to count the>>// height of tree>>let depth = 0>>let q = []>>>// pushing first level element along with null>>q.push(root)>>q.push(>null>)>>while>(q.length>0){>>let temp = q.shift()>>>// When null encountered, increment the value>>if>(temp ==>null>)>>depth += 1>>>// If null not encountered, keep moving>>if>(temp !=>null>){>>if>(temp.left)>>q.push(temp.left)>>>if>(temp.right)>>q.push(temp.right)>>}>>>// If queue still have elements left,>>// push null again to the queue.>>else>if>(q.length>0)>>q.push(>null>)>>}>>return>depth>}>// Driver program>// Let us create Binary Tree shown in above example>let root = newNode(1)>root.left = newNode(2)>root.right = newNode(3)>root.left.left = newNode(4)>root.left.right = newNode(5)>document.write(`Height(Depth) of tree is: ${height(root)}`,>''>)>// This code is contributed by shinjanpatra>>>>
ProduktionHeight(Depth) of tree is: 3>Tidskompleksitet: PÅ)
Hjælpeplads: PÅ)En anden metode til at finde højden ved hjælp af Level Order Traversal :
C++
// C++ program for above approach>#include>using>namespace>std;>// A Tree node>struct>Node {>>int>key;>>struct>Node *left, *right;>};>// Utility function to create a new node>Node* newNode(>int>key)>{>>Node* temp =>new>Node;>>temp->nøgle = nøgle;>>temp->venstre = temp->højre = NULL;>>return>(temp);>}>/*Function to find the height(depth) of the tree*/>int>height(Node* root)>{>>// Initialising a variable to count the>>// height of tree>>queue q;>>q.push(root);>>int>height = 0;>>while>(!q.empty()) {>>int>size = q.size();>>for>(>int>i = 0; i Node* temp = q.front(); q.pop(); if (temp->venstre != NULL) { q.push(temp->venstre); } if (temp->right != NULL) { q.push(temp->right); } } højde++; } returhøjde; } // Driverprogram int main() { // Lad os oprette binært træ vist i ovenstående eksempel Node* root = newNode(1); root->venstre = nyNode(2); root->right = newNode(3); root->venstre->venstre = nyNode(4); root->venstre->højre = newNode(5); cout<< 'Height(Depth) of tree is: ' << height(root); } // This code is contributed by Abhijeet Kumar(abhijeet19403)>>>Java
// Java program for above approach>import>java.util.LinkedList;>import>java.util.Queue;>class>GFG {>>// A tree node structure>>static>class>Node {>>int>key;>>Node left;>>Node right;>>}>>// Utility function to create>>// a new node>>static>Node newNode(>int>key)>>{>>Node temp =>new>Node();>>temp.key = key;>>temp.left = temp.right =>null>;>>return>temp;>>}>>/*Function to find the height(depth) of the tree*/>>public>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>Queue q =>new>LinkedList();>>q.add(root);>>int>height =>0>;>>while>(!q.isEmpty()) {>>int>size = q.size();>>for>(>int>i =>0>; i Node temp = q.poll(); if (temp.left != null) { q.add(temp.left); } if (temp.right != null) { q.add(temp.right); } } height++; } return height; } // Driver Code public static void main(String args[]) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); System.out.println('Height(Depth) of tree is: ' + height(root)); } }>>>Python3
# Python3 program to find the height of a tree>># A binary tree node>class>Node:>>># Constructor to create a new node>>def>__init__(>self>, data):>>self>.key>=>data>>self>.left>=>None>>self>.right>=>None>># Function to find height of tree>def>height(root):>># Base Case>>if>root>is>None>:>>return>0>>># Create an empty queue for level order traversal>>q>=>[]>>># Enqueue Root and initialize height>>q.append(root)>>height>=>0>>># Loop while queue is not empty>>while>q:>>># nodeCount (queue size) indicates number of nodes>># at current level>>nodeCount>=>len>(q)>>># Dequeue all nodes of current level and Enqueue all>># nodes of next level>>while>nodeCount>>0>:>>node>=>q.pop(>0>)>>if>node.left>is>not>None>:>>q.append(node.left)>>if>node.right>is>not>None>:>>q.append(node.right)>>nodeCount>->=>1>>height>+>=>1>>>return>height>># Driver Code>root>=>Node(>1>)>root.left>=>Node(>2>)>root.right>=>Node(>3>)>root.left.left>=>Node(>4>)>root.left.right>=>Node(>5>)>>print>(>'Height(Depth) of tree is'>, height(root))>>>C#
using>System;>using>System.Collections.Generic;>class>GFG {>>// A Tree node>>class>Node {>>public>int>key;>>public>Node left, right;>>public>Node(>int>key)>>{>>this>.key=key;>>this>.left=>this>.right=>null>;>>}>>}>>// Utility function to create a new node>>/*Node newNode(int key)>>{>>Node* temp = new Node;>>temp.key = key;>>temp.left = temp.right = NULL;>>return (temp);>>}*/>>/*Function to find the height(depth) of the tree*/>>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>Queue q=>new>Queue();>>q.Enqueue(root);>>int>height = 0;>>while>(q.Count>0) {>>int>size = q.Count;>>for>(>int>i = 0; i Node temp = q.Peek(); q.Dequeue(); if (temp.left != null) { q.Enqueue(temp.left); } if (temp.right != null) { q.Enqueue(temp.right); } } height++; } return height; } // Driver program public static void Main() { // Let us create Binary Tree shown in above example Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); Console.Write('Height(Depth) of tree is: ' + height(root)); } } // This code is contributed by poojaagarwal2.>>>Javascript
// JavaScript program for above approach>// a tree node>class Node{>>constructor(key){>>this>.key = key;>>this>.left =>this>.right =>null>;>>}>}>// utility function to create a new node>function>newNode(key){>>return>new>Node(key);>}>// function to find the height of the tree>function>height(root){>>// initialising a variable to count the>>// height of tree>>let q = [];>>q.push(root);>>let height = 0;>>while>(q.length>0){>>let size = q.length;>>for>(let i = 0; i let temp = q.shift(); if(temp.left != null){ q.push(temp.left); } if(temp.right != null){ q.push(temp.right); } } height++; } return height; } // driver code let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); document.write('Height(Depth) of tree is: ' + height(root)); // this code is contributed by Kirti Agarwal(kirtiagarwal23121999)>>>
ProduktionHeight(Depth) of tree is: 3>Tidskompleksitet: PÅ)
Hjælpeplads: PÅ)