logo

Sorteret efterfølger af størrelse 3 i lineær tid ved hjælp af konstant rum

Givet en matrix er opgaven at finde tre elementer af denne matrix, således at de er i sorteret form, dvs. for alle tre elementer a[i] a[j] og a[k] følger de dette forhold: en[i]< a[j] < a[k] hvor jeg< j < k . Dette problem skal løses vha konstant plads eller ingen ekstra plads.

mission umulig alle film

Dette problem er allerede løst i lineær tid ved hjælp af lineært rum: Find en sorteret undersekvens af størrelse 3 i lineær tid

Eksempler:  



  Input:   arr[] = {12 11 10 5 2 6 30}   Output:   5 6 30 or 2 6 30   Explanation:   Answer is 5 6 30 because 5 < 6 < 30 and they occur in this sequence in the array.   Input:   arr[] = {5 7 4 8}   Output:   5 7 8   Explanation:   Answer is 5 7 8 because 5 < 7 < 8 and they occur in the same sequence in the array 

Løsning: Målet er at finde tre elementer a b og c sådan at -en< b < c og elementerne skal forekomme i samme rækkefølge i arrayet.

Nærme sig: Opgaven handler om at finde tre elementer a b c hvor a< b < c and they must appear in the same order as in the array. So the intuition at any step must be followed as such. One of the variable (lille) skal gemme det mindste element i arrayet og den anden variabel stor vil blive tildelt en værdi, når der allerede er en mindre værdi til stede i (lille) variabel. Dette vil føre til dannelsen af ​​et par af to variable, som danner de første to elementer i den påkrævede sekvens. På samme måde, hvis der kan findes en anden værdi i arrayet, der er tildelt, når de to første variable allerede er tildelt og har en mindre værdi end det nuværende element, ville søgningen efter den tredje værdi være afsluttet. Dette fuldender tripletten a b og c, således at a< b < c in similar sequence to the array.

arraylist i java

Algoritme  

  1. Opret tre variabler lille - Gemmer det mindste element stor - gemmer det andet element i sekvensen jeg - sløjfetæller
  2. Flyt langs input-arrayet fra start til slut.
  3. Hvis det aktuelle element er mindre end eller lig med variabel lille opdatere variablen.
  4. Ellers hvis det nuværende element er mindre end eller lig med variabel stor opdatere variablen. Så her får vi et par (lille stor) i dette øjeblik hvor lille< large og de forekommer i den krævede rækkefølge.
  5. Ellers, hvis de to foregående tilfælde ikke matcher, bryd løkken, da vi har et par, hvor det nuværende element er større end begge variabler lille og stor . Gem indekset i variabel jeg .
  6. Hvis pauseerklæringen ikke er stødt på, er det garanteret, at der ikke eksisterer en sådan triplet.
  7. Ellers er der en triplet, der opfylder kriterierne, men variablen lille kan være blevet opdateret til en ny mindre værdi.
  8. Så gå gennem arrayet fra start til indeks i.
  9. Tildel variablen igen lille til ethvert element mindre end stor det er garanteret, at der findes en.
  10. Udskriv værdierne lille stor og det array-element

Implementering :

C++
// C/C++ program to find a sorted sub-sequence of // size 3 using constant space #include    using namespace std; // A function to fund a sorted sub-sequence of size 3 void find3Numbers(int arr[] int n) {  // Initializing small and large(second smaller)  // by INT_MAX  int small = INT_MAX large = INT_MAX;  int i;  for (i = 0; i < n; i++)  {  // Update small for smallest value of array  if (arr[i] <= small)  small = arr[i];  // Update large for second smallest value of  // array after occurrence of small  else if (arr[i] <= large)  large = arr[i];  // If we reach here we found 3 numbers in  // increasing order : small large and arr[i]  else  break;  }  if (i == n)  {  printf('No such triplet found');  return;  }  // last and second last will be same but first  // element can be updated retrieving first element  // by looping upto i  for (int j = 0; j <= i; j++)  {  if (arr[j] < large)  {  small = arr[j];  break;  }  }  printf('%d %d %d' small large arr[i]);  return; } // Driver program to test above function int main() {  int arr[] = {5 7 4 8};  int n = sizeof(arr)/sizeof(arr[0]);  find3Numbers(arr n);  return 0; } 
Java
// Java program to find a sorted subsequence of // size 3 using constant space class GFG {  // A function to fund a sorted subsequence of size 3  static void find3Numbers(int arr[] int n)  {  // Initializing small and large(second smaller)  // by INT_MAX  int small = +2147483647 large = +2147483647;  int i;  for (i = 0; i < n; i++)  {  // Update small for smallest value of array  if (arr[i] <= small)  small = arr[i];    // Update large for second smallest value of  // array after occurrence of small  else if (arr[i] <= large)  large = arr[i];    // If we reach here we found 3 numbers in  // increasing order : small large and arr[i]  else  break;  }    if (i == n)  {  System.out.print('No such triplet found');  return;  }    // last and second last will be same but first  // element can be updated retrieving first element  // by looping upto i  for (int j = 0; j <= i; j++)  {  if (arr[j] < large)  {  small = arr[j];  break;  }  }    System.out.print(small+' '+large+' '+arr[i]);  return;  }    // Driver program  public static void main(String arg[])  {  int arr[] = {5 7 4 8};  int n = arr.length;  find3Numbers(arr n);  } } // This code is contributed by Anant Agarwal. 
Python3
# Python3 program to find a sorted subsequence  # of size 3 using constant space # Function to fund a sorted subsequence of size 3 def find3Numbers(arr n): # Initializing small and large(second smaller) # by INT_MAX small = +2147483647 large = +2147483647 for i in range(n): # Update small for smallest value of array if (arr[i] <= small): small = arr[i] # Update large for second smallest value of # array after occurrence of small elif (arr[i] <= large): large = arr[i] # If we reach here we found 3 numbers in # increasing order : small large and arr[i] else: break if (i == n): print('No such triplet found') return # last and second last will be same but # first element can be updated retrieving  # first element by looping upto i for j in range(i + 1): if (arr[j] < large): small = arr[j] break print(small' 'large' 'arr[i]) return # Driver program arr= [5 7 4 8] n = len(arr) find3Numbers(arr n) # This code is contributed by Anant Agarwal. 
C#
// C# program to find a sorted sub-sequence of // size 3 using constant space using System; class GFG {    // A function to fund a sorted sub-sequence  // of size 3  static void find3Numbers(int []arr int n)  {    // Initializing small and large(second smaller)  // by INT_MAX  int small = +2147483647 large = +2147483647;  int i;  for (i = 0; i < n; i++)  {    // Update small for smallest value of array  if (arr[i] <= small)  small = arr[i];    // Update large for second smallest value of  // array after occurrence of small  else if (arr[i] <= large)  large = arr[i];    // If we reach here we found 3 numbers in  // increasing order : small large and arr[i]  else  break;  }    if (i == n)  {  Console.Write('No such triplet found');  return;  }    // last and second last will be same but first  // element can be updated retrieving first element  // by looping upto i  for (int j = 0; j <= i; j++)  {  if (arr[j] < large)  {  small = arr[j];  break;  }  }    Console.Write(small + ' ' + large + ' ' + arr[i]);  return;  }    // Driver program  public static void Main()  {  int []arr = {5 7 4 8};  int n = arr.Length;  find3Numbers(arr n);  } } <br> // This code is contributed by nitin mittal 
PHP
 // PHP program to find a sorted  // subsequence of size 3 using  // constant space // A function to fund a sorted // subsequence of size 3 function find3Numbers($arr $n) { // Initializing small and  // large(second smaller) // by INT_MAX $small = PHP_INT_MAX; $large = PHP_INT_MAX; $i; for($i = 0; $i < $n; $i++) { // Update small for smallest // value of array if ($arr[$i] <= $small) $small = $arr[$i]; // Update large for second // smallest value of after  // occurrence of small else if ($arr[$i] <= $large) $large = $arr[$i]; // If we reach here we  // found 3 numbers in // increasing order :  // small large and arr[i] else break; } if ($i == $n) { echo 'No such triplet found'; return; } // last and second last will // be same but first // element can be updated  // retrieving first element // by looping upto i for($j = 0; $j <= $i; $j++) { if ($arr[$j] < $large) { $small = $arr[$j]; break; } } echo $small' ' $large' ' $arr[$i]; return; } // Driver Code $arr = array(5 7 4 8); $n = count($arr); find3Numbers($arr $n); // This code is contributed by anuj_67. ?> 
JavaScript
<script>  // JavaScript program to find a  // sorted sub-sequence of  // size 3 using constant space    // A function to fund a sorted sub-sequence  // of size 3  function find3Numbers(arr n)  {    // Initializing small and large(second smaller)  // by INT_MAX  let small = +2147483647 large = +2147483647;  let i;  for (i = 0; i < n; i++)  {    // Update small for smallest value of array  if (arr[i] <= small)  small = arr[i];    // Update large for second smallest value of  // array after occurrence of small  else if (arr[i] <= large)  large = arr[i];    // If we reach here we found 3 numbers in  // increasing order : small large and arr[i]  else  break;  }    if (i == n)  {  document.write('No such triplet found');  return;  }    // last and second last will be same but first  // element can be updated retrieving first element  // by looping upto i  for (let j = 0; j <= i; j++)  {  if (arr[j] < large)  {  small = arr[j];  break;  }  }    document.write(small + ' ' + large + ' ' + arr[i]);  return;  }    let arr = [5 7 4 8];  let n = arr.length;  find3Numbers(arr n);   </script> 

Produktion
5 7 8

Kompleksitetsanalyse:  

    Tidskompleksitet: O(n). 
    Da arrayet kun gennemløbes det dobbelte af tidskompleksiteten O(2*n) som er lig med På) .Rumkompleksitet: O(1). 
    Da kun tre elementer er lagret, er rummets kompleksitet konstant eller O(1) .

 

nøgle til bærbar indsættelse