Du får n par tal. I hvert par er det første tal altid mindre end det andet tal. Et par (c d) kan følge efter et andet par (a b), hvis b< c. Chain of pairs can be formed in this fashion. Find the longest chain which can be formed from a given set of pairs. Eksempler:
Input: (5 24) (39 60) (15 28) (27 40) (50 90) Output: (5 24) (27 40) (50 90) Input: (11 20) {10 40) (45 60) (39 40) Output: (11 20) (39 40) (45 60) I tidligere indlæg, vi har diskuteret om problemet med maksimal længde kæde af par. Indlægget dækkede dog kun kode vedrørende at finde længden af kæden med maksimal størrelse, men ikke til konstruktionen af kæden med maksimal størrelse. I dette indlæg vil vi diskutere, hvordan man selv konstruerer Maksimal Længde Chain of Pairs. Ideen er først at sortere givne par i stigende rækkefølge efter deres første element. Lad arr[0..n-1] være input-arrayet af par efter sortering. Vi definerer vektor L sådan, at L[i] i sig selv er en vektor, der lagrer den maksimale længdekæde af par af arr[0..i], der ender med arr[i]. Derfor kan i L[i] for et indeks skrives rekursivt som -
L[0] = {arr[0]} L[i] = {Max(L[j])} + arr[i] where j < i and arr[j].b < arr[i].a = arr[i] if there is no such j For eksempel for (5 24) (39 60) (15 28) (27 40) (50 90)
L[0]: (5 24) L[1]: (5 24) (39 60) L[2]: (15 28) L[3]: (5 24) (27 40) L[4]: (5 24) (27 40) (50 90)
Bemærk venligst at sortering af par udføres, da vi skal finde den maksimale parlængde, og bestilling er ligegyldig her. Hvis vi ikke sorterer, får vi par i stigende rækkefølge, men de vil ikke være maksimalt mulige par. Nedenfor er implementering af ovenstående idé -
C++/* Dynamic Programming solution to construct Maximum Length Chain of Pairs */ #include using namespace std; struct Pair { int a; int b; }; // comparator function for sort function int compare(Pair x Pair y) { return x.a < y.a; } // Function to construct Maximum Length Chain // of Pairs void maxChainLength(vector<Pair> arr) { // Sort by start time sort(arr.begin() arr.end() compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. vector<vector<Pair> > L(arr.size()); // L[0] is equal to arr[0] L[0].push_back(arr[0]); // start from index 1 for (int i = 1; i < arr.size(); i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if ((arr[j].b < arr[i].a) && (L[j].size() > L[i].size())) L[i] = L[j]; } L[i].push_back(arr[i]); } // print max length vector vector<Pair> maxChain; for (vector<Pair> x : L) if (x.size() > maxChain.size()) maxChain = x; for (Pair pair : maxChain) cout << '(' << pair.a << ' ' << pair.b << ') '; } // Driver Function int main() { Pair a[] = {{5 29} {39 40} {15 28} {27 40} {50 90}}; int n = sizeof(a)/sizeof(a[0]); vector<Pair> arr(a a + n); maxChainLength(arr); return 0; }
Java // Java program to implement the approach import java.util.ArrayList; import java.util.Collections; import java.util.List; // User Defined Pair Class class Pair { int a; int b; } class GFG { // Custom comparison function public static int compare(Pair x Pair y) { return x.a - (y.a); } public static void maxChainLength(List<Pair> arr) { // Sort by start time Collections.sort(arr Main::compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. List<List<Pair>> L = new ArrayList<>(); // L[0] is equal to arr[0] List<Pair> l0 = new ArrayList<>(); l0.add(arr.get(0)); L.add(l0); for (int i = 0; i < arr.size() - 1; i++) { L.add(new ArrayList<>()); } // start from index 1 for (int i = 1; i < arr.size(); i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr.get(j).b < arr.get(i).a && L.get(j).size() > L.get(i).size()) L.set(i L.get(j)); } L.get(i).add(arr.get(i)); } // print max length vector List<Pair> maxChain = new ArrayList<>(); for (List<Pair> x : L) if (x.size() > maxChain.size()) maxChain = x; for (Pair pair : maxChain) System.out.println('(' + pair.a + ' ' + pair.b + ') '); } // Driver Code public static void main(String[] args) { Pair[] a = {new Pair() {{a = 5; b = 29;}} new Pair() {{a = 39; b = 40;}} new Pair() {{a = 15; b = 28;}} new Pair() {{a = 27; b = 40;}} new Pair() {{a = 50; b = 90;}}}; int n = a.length; List<Pair> arr = new ArrayList<>(); for (Pair anA : a) { arr.add(anA); } // Function call maxChainLength(arr); } } // This code is contributed by phasing17
Python3 # Dynamic Programming solution to construct # Maximum Length Chain of Pairs class Pair: def __init__(self a b): self.a = a self.b = b def __lt__(self other): return self.a < other.a def maxChainLength(arr): # Function to construct # Maximum Length Chain of Pairs # Sort by start time arr.sort() # L[i] stores maximum length of chain of # arr[0..i] that ends with arr[i]. L = [[] for x in range(len(arr))] # L[0] is equal to arr[0] L[0].append(arr[0]) # start from index 1 for i in range(1 len(arr)): # for every j less than i for j in range(i): # L[i] = {Max(L[j])} + arr[i] # where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a and len(L[j]) > len(L[i])): L[i] = L[j] L[i].append(arr[i]) # print max length vector maxChain = [] for x in L: if len(x) > len(maxChain): maxChain = x for pair in maxChain: print('({a}{b})'.format(a = pair.a b = pair.b) end = ' ') print() # Driver Code if __name__ == '__main__': arr = [Pair(5 29) Pair(39 40) Pair(15 28) Pair(27 40) Pair(50 90)] n = len(arr) maxChainLength(arr) # This code is contributed # by vibhu4agarwal
C# using System; using System.Collections.Generic; public class Pair { public int a; public int b; } public class Program { public static int Compare(Pair x Pair y) { return x.a - (y.a); } public static void MaxChainLength(List<Pair> arr) { // Sort by start time arr.Sort(Compare); // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. List<List<Pair>> L = new List<List<Pair>>(); // L[0] is equal to arr[0] L.Add(new List<Pair> { arr[0] }); for (int i = 0; i < arr.Count - 1; i++) L.Add(new List<Pair>()); // start from index 1 for (int i = 1; i < arr.Count; i++) { // for every j less than i for (int j = 0; j < i; j++) { // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a && L[j].Count > L[i].Count) L[i] = L[j]; } L[i].Add(arr[i]); } // print max length vector List<Pair> maxChain = new List<Pair>(); foreach (List<Pair> x in L) if (x.Count > maxChain.Count) maxChain = x; foreach (Pair pair in maxChain) Console.WriteLine('(' + pair.a + ' ' + pair.b + ') '); } public static void Main() { Pair[] a = { new Pair() { a = 5 b = 29 } new Pair() { a = 39 b = 40 } new Pair() { a = 15 b = 28 } new Pair() { a = 27 b = 40 } new Pair() { a = 50 b = 90 } }; int n = a.Length; List<Pair> arr = new List<Pair>(a); MaxChainLength(arr); } }
JavaScript <script> // Dynamic Programming solution to construct // Maximum Length Chain of Pairs class Pair{ constructor(a b){ this.a = a this.b = b } } function maxChainLength(arr){ // Function to construct // Maximum Length Chain of Pairs // Sort by start time arr.sort((cd) => c.a - d.a) // L[i] stores maximum length of chain of // arr[0..i] that ends with arr[i]. let L = new Array(arr.length).fill(0).map(()=>new Array()) // L[0] is equal to arr[0] L[0].push(arr[0]) // start from index 1 for (let i=1;i<arr.length;i++){ // for every j less than i for(let j=0;j<i;j++){ // L[i] = {Max(L[j])} + arr[i] // where j < i and arr[j].b < arr[i].a if (arr[j].b < arr[i].a && L[j].length > L[i].length) L[i] = L[j] } L[i].push(arr[i]) } // print max length vector let maxChain = [] for(let x of L){ if(x.length > maxChain.length) maxChain = x } for(let pair of maxChain) document.write(`(${pair.a} ${pair.b}) `) document.write('') } // driver code let arr = [new Pair(5 29) new Pair(39 40) new Pair(15 28) new Pair(27 40) new Pair(50 90)] let n = arr.length maxChainLength(arr) /// This code is contributed by shinjanpatra </script>
Produktion:
(5 29) (39 40) (50 90)
Tidskompleksitet af ovenstående dynamisk programmeringsløsning er O(n2) hvor n er antallet af par. Hjælpeplads brugt af programmet er O(n2).