logo

Minimum antal tilføjelser, der er nødvendige for at lave et strengpalindrom

Givet en streng s opgaven er at finde minimum karakterer at være vedhæftet (indsættelse i slutningen) at lave et strengpalindrom. 

Eksempler:  

Input : s = 'færdig'
Produktion : 2
Forklaring: Vi kan lave strengpalindrom som 'abede' ikke ' ved at tilføje ikke for enden af ​​strengen.

Input :s = 'aabb'
Produktion : 2
Forklaring: Vi kan lave string palindrome as'aabb aa ' ved at tilføje aa for enden af ​​strengen.



Indholdsfortegnelse

Tjek palindrom hver gang - O(n^2) Tid og O(n) Mellemrum

Løsningen indebærer progressivt fjernelse af tegn fra begyndelse af strengen en efter en, indtil strengen bliver en palindrom . Svaret vil være det samlede antal tegn, der er fjernet.

Overvej f.eks. strengen s = 'her'. Vi tjekker først, om hele strengen er et palindrom, hvilket den ikke er. Dernæst fjerner vi det første tegn, hvilket resulterer i string 'bede'. Vi tjekker igen, men det er stadig ikke et palindrom. Vi fjerner så en anden karakter fra starten forlader 'ede'. Denne gang er strengen et palindrom. Derfor output er 2 repræsenterer antallet af tegn fjernet fra begyndelsen for at opnå et palindrom.

C++
// C++ code to find minimum number  // of appends to make string Palindrome #include    using namespace std; // Function to check if a given string is a palindrome bool isPalindrome(string s) {  int left = 0 right = s.length() - 1;  while (left < right) {  if (s[left] != s[right]) return false;  left++;  right--;  }  return true; } // Function to find the minimum number of  // characters to remove from the beginning int noOfAppends(string& s) {  int n = s.length();    // Remove characters from the start until   // the string becomes a palindrome  for (int i = 0; i < n; i++) {  if (isPalindrome(s.substr(i))) {    // Return the number of characters removed  return i;   }  }    // If no palindrome is found remove  // all but one character  return n - 1;  } int main() {  string s = 'abede';  int result = noOfAppends(s);  cout << result << endl;  return 0; } 
Java
// Java code to find minimum number  // of appends to make string Palindrome import java.util.*; class GfG {    // Function to check if a given string is a palindrome  static boolean isPalindrome(String s) {  int left = 0 right = s.length() - 1;  while (left < right) {  if (s.charAt(left) != s.charAt(right)) return false;  left++;  right--;  }  return true;  }    // Function to find the minimum number of   // characters to remove from the beginning  static int noOfAppends(String s) {  int n = s.length();    // Remove characters from the start until   // the string becomes a palindrome  for (int i = 0; i < n; i++) {  if (isPalindrome(s.substring(i))) {    // Return the number of characters removed  return i;  }  }    // If no palindrome is found remove  // all but one character  return n - 1;  }  public static void main(String[] args) {  String s = 'abede';  int result = noOfAppends(s);  System.out.println(result);  } } 
Python
# Python code to find minimum number  # of appends to make string Palindrome # Function to check if a given string is a palindrome def is_palindrome(s): left right = 0 len(s) - 1 while left < right: if s[left] != s[right]: return False left += 1 right -= 1 return True # Function to find the minimum number of  # characters to remove from the beginning def no_of_appends(s): n = len(s) # Remove characters from the start until  # the string becomes a palindrome for i in range(n): if is_palindrome(s[i:]): # Return the number of characters # removed return i # If no palindrome is found remove # all but one character return n - 1 if __name__ == '__main__': s = 'abede' result = no_of_appends(s) print(result) 
C#
// C# code to find minimum number  // of appends to make string Palindrome using System; class GfG {    // Function to check if a given string   // is a palindrome  static bool IsPalindrome(string s) {  int left = 0 right = s.Length - 1;  while (left < right) {  if (s[left] != s[right]) return false;  left++;  right--;  }  return true;  }  // Function to find the minimum number of   // characters to remove from the beginning  static int NoOfAppends(string s) {  int n = s.Length;    // Remove characters from the start until   // the string becomes a palindrome  for (int i = 0; i < n; i++) {  if (IsPalindrome(s.Substring(i))) {    // Return the number of characters  // removed  return i;  }  }    // If no palindrome is found remove all but   // one character  return n - 1;  }  static void Main(string[] args) {  string s = 'abede';  int result = NoOfAppends(s);  Console.WriteLine(result);  } } 
JavaScript
// JavaScript code to find minimum number  // of appends to make string Palindrome // Function to check if a given string is a palindrome function isPalindrome(s) {  let left = 0 right = s.length - 1;  while (left < right) {  if (s[left] !== s[right]) return false;  left++;  right--;  }  return true; } // Function to find the minimum number of  // characters to remove from the beginning function noOfAppends(s) {  let n = s.length;    // Remove characters from the start until   // the string becomes a palindrome  for (let i = 0; i < n; i++) {  if (isPalindrome(s.substring(i))) {    // Return the number of  // characters removed  return i;  }  }    // If no palindrome is found remove  // all but one character  return n - 1; } const s = 'abede'; const result = noOfAppends(s); console.log(result); 

Produktion
2 

Brug af Knuth Morris Pratt Algorithm - O(n) Tid og O(n) Rum

Grundtanken bag tilgangen er, at vi beregne de største understreng fra slutningen og længden af ​​snoren minus denne værdi er minimum antal bilag. Logikken er intuitiv, vi behøver ikke tilføje palindrom og kun dem, der ikke danner palindromet. For at finde dette største palindrom fra slutningen vi bagside strengen beregne DFA.

De DFA (Deterministic Finite Automaton) nævnt i forbindelse med Knuth Morris Pratt Algoritme er et koncept, der bruges til at hjælpe med at finde længste præfiks for en streng, der også er et suffiks og vend strengen igen (også vinder den oprindelige streng tilbage) og find den endelige tilstand, som repræsenterer antallet af matches af strengen med den ærbødige streng, og derfor får vi den største understreng, der er et palindrom fra enden.

C++
// CPP program for the given approach  // using 2D vector for DFA #include    using namespace std; // Function to build the DFA and precompute the state vector<vector<int>> buildDFA(string& s) {  int n = s.length();    // Number of possible characters (ASCII range)  int c = 256;     // Initialize 2D vector with zeros  vector<vector<int>> dfa(n vector<int>(c 0));   int x = 0;  dfa[0][s[0]] = 1;  // Build the DFA for the given string  for (int i = 1; i < n; i++) {  for (int j = 0; j < c; j++) {  dfa[i][j] = dfa[x][j];  }  dfa[i][s[i]] = i + 1;  x = dfa[x][s[i]];  }  return dfa; } // Function to find the longest overlap // between the string and its reverse int longestOverlap(vector<vector<int>>& dfa string& query) {  int ql = query.length();  int state = 0;  // Traverse through the query to   // find the longest overlap  for (int i = 0; i < ql; i++) {  state = dfa[state][query[i]];  }  return state; } // Function to find the minimum // number of characters to append int minAppends(string s) {    // Reverse the string  string reversedS = s;  reverse(reversedS.begin() reversedS.end());  // Build the DFA for the reversed string  vector<vector<int>> dfa = buildDFA(reversedS);  // Get the longest overlap with the original string  int longestOverlapLength = longestOverlap(dfa s);  // Minimum characters to append   // to make the string a palindrome  return s.length() - longestOverlapLength; } int main() {  string s = 'abede';  cout << minAppends(s) << endl;  return 0; } 
Java
// Java program for the given approach // using 2D array for DFA import java.util.*; class GfG {  // Function to build the DFA and precompute the state  static int[][] buildDFA(String s) {  int n = s.length();  // Number of possible characters (ASCII range)  int c = 256;  // Initialize 2D array with zeros  int[][] dfa = new int[n][c];  int x = 0;  dfa[0][s.charAt(0)] = 1;  // Build the DFA for the given string  for (int i = 1; i < n; i++) {  for (int j = 0; j < c; j++) {  dfa[i][j] = dfa[x][j];  }  dfa[i][s.charAt(i)] = i + 1;  x = dfa[x][s.charAt(i)];  }  return dfa;  }  // Function to find the longest overlap  // between the string and its reverse  static int longestOverlap(int[][] dfa String query) {  int ql = query.length();  int state = 0;  // Traverse through the query to   // find the longest overlap  for (int i = 0; i < ql; i++) {  state = dfa[state][query.charAt(i)];  }  return state;  }  // Function to find the minimum  // number of characters to append  static int minAppends(String s) {    // Reverse the string  String reversedS = new StringBuilder(s).reverse().toString();  // Build the DFA for the reversed string  int[][] dfa = buildDFA(reversedS);  // Get the longest overlap with the original string  int longestOverlapLength = longestOverlap(dfa s);  // Minimum characters to append   // to make the string a palindrome  return s.length() - longestOverlapLength;  }  public static void main(String[] args) {  String s = 'abede';  System.out.println(minAppends(s));  } } 
Python
# Python program for the given approach  # using 2D list for DFA # Function to build the DFA and precompute the state def buildDFA(s): n = len(s) # Number of possible characters (ASCII range) c = 256 # Initialize 2D list with zeros dfa = [[0] * c for _ in range(n)] x = 0 dfa[0][ord(s[0])] = 1 # Build the DFA for the given string for i in range(1 n): for j in range(c): dfa[i][j] = dfa[x][j] dfa[i][ord(s[i])] = i + 1 x = dfa[x][ord(s[i])] return dfa # Function to find the longest overlap # between the string and its reverse def longestOverlap(dfa query): ql = len(query) state = 0 # Traverse through the query to  # find the longest overlap for i in range(ql): state = dfa[state][ord(query[i])] return state # Function to find the minimum # number of characters to append def minAppends(s): # Reverse the string reversedS = s[::-1] # Build the DFA for the reversed string dfa = buildDFA(reversedS) # Get the longest overlap with the # original string longestOverlapLength = longestOverlap(dfa s) # Minimum characters to append  # to make the string a palindrome return len(s) - longestOverlapLength if __name__ == '__main__': s = 'abede' print(minAppends(s)) 
C#
// C# program for the given approach // using 2D array for DFA using System; class GfG {  // Function to build the DFA and precompute the state  static int[] buildDFA(string s) {  int n = s.Length;  // Number of possible characters   // (ASCII range)  int c = 256;  // Initialize 2D array with zeros  int[] dfa = new int[n c];  int x = 0;  dfa[0 s[0]] = 1;  // Build the DFA for the given string  for (int i = 1; i < n; i++) {  for (int j = 0; j < c; j++) {  dfa[i j] = dfa[x j];  }  dfa[i s[i]] = i + 1;  x = dfa[x s[i]];  }  return dfa;  }  // Function to find the longest overlap  // between the string and its reverse  static int longestOverlap(int[] dfa string query) {  int ql = query.Length;  int state = 0;  // Traverse through the query to   // find the longest overlap  for (int i = 0; i < ql; i++) {  state = dfa[state query[i]];  }  return state;  }  // Function to find the minimum  // number of characters to append  static int minAppends(string s) {    // Reverse the string using char array  char[] reversedArray = s.ToCharArray();  Array.Reverse(reversedArray);  string reversedS = new string(reversedArray);  // Build the DFA for the reversed string  int[] dfa = buildDFA(reversedS);  // Get the longest overlap with the original string  int longestOverlapLength = longestOverlap(dfa s);  // Minimum characters to append   // to make the string a palindrome  return s.Length - longestOverlapLength;  }  static void Main() {  string s = 'abede';  Console.WriteLine(minAppends(s));  } } 
JavaScript
// JavaScript program for the given approach // using 2D array for DFA // Function to build the DFA and precompute the state function buildDFA(s) {  let n = s.length;  // Number of possible characters  // (ASCII range)  let c = 256;  // Initialize 2D array with zeros  let dfa = Array.from({ length: n } () => Array(c).fill(0));  let x = 0;  dfa[0][s.charCodeAt(0)] = 1;  // Build the DFA for the given string  for (let i = 1; i < n; i++) {  for (let j = 0; j < c; j++) {  dfa[i][j] = dfa[x][j];  }  dfa[i][s.charCodeAt(i)] = i + 1;  x = dfa[x][s.charCodeAt(i)];  }  return dfa; } // Function to find the longest overlap // between the string and its reverse function longestOverlap(dfa query) {  let ql = query.length;  let state = 0;  // Traverse through the query to   // find the longest overlap  for (let i = 0; i < ql; i++) {  state = dfa[state][query.charCodeAt(i)];  }  return state; } // Function to find the minimum // number of characters to append function minAppends(s) {  // Reverse the string  let reversedS = s.split('').reverse().join('');  // Build the DFA for the reversed string  let dfa = buildDFA(reversedS);  // Get the longest overlap with the original string  let longestOverlapLength = longestOverlap(dfa s);  // Minimum characters to append   // to make the string a palindrome  return s.length - longestOverlapLength; } let s = 'abede'; console.log(minAppends(s)); 

Produktion
2 

  Relateret artikel: 

  • Dynamisk programmering | Sæt 28 (Minimum indsættelser for at danne et palindrom)
Opret quiz