Givet en række størrelser n opgaven er at gøre værdien af alle elementer lig med minimumsomkostninger . Omkostningerne ved at ændre en værdi fra x til y er abs(x - y).
Eksempler:
2 til 1 multiplekser
Input: arr[] = [1 100 101]
Produktion : 100
Forklaring: Vi kan ændre alle dens værdier til 100 med minimale omkostninger
|1 - 100| + |100 - 100| + |101 - 100| = 100Input : arr[] = [4 6]
Produktion : 2
Forklaring: Vi kan ændre alle dens værdier til 5 med minimale omkostninger
|4 - 5| + |5 - 6| = 2Input: arr[] = [5 5 5 5]
Produktion:
Forklaring: Alle værdier er allerede ens.
[Naiv tilgang] Brug af 2 indlejrede sløjfer - O(n^2) tid og O(1) rum
C++Bemærk venligst, at vores svar altid kan være en af matrixværdierne. Selv i det andet eksempel ovenfor kan vi alternativt lave begge som 4 eller begge som 6 til samme pris..
Ideen er at betragte hver værdi i arrayet som en potentiel målværdi og derefter beregne de samlede omkostninger ved at konvertere alle andre elementer til den målværdi. Ved at kontrollere alle mulige målværdier kan vi finde den, der resulterer i de minimale samlede omkostninger ved konvertering.USA hvor mange byer
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function which finds the minimum // cost to make array elements equal int minCost(vector<int> &arr) { int n = arr.size(); int ans = INT_MAX; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = min(ans currentCost); } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr) << endl; return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function which finds the minimum // cost to make array elements equal static int minCost(int[] arr) { int n = arr.length; int ans = Integer.MAX_VALUE; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += Math.abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.min(ans currentCost); } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function which finds the minimum # cost to make array elements equal def minCost(arr): n = len(arr) ans = float('inf') # Try each element as the target value for i in range(n): currentCost = 0 # Calculate cost of making all # elements equal to arr[i] for j in range(n): currentCost += abs(arr[j] - arr[i]) # Update minimum cost if current cost is lower ans = min(ans currentCost) return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function which finds the minimum // cost to make array elements equal static int minCost(int[] arr) { int n = arr.Length; int ans = int.MaxValue; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += Math.Abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.Min(ans currentCost); } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function which finds the minimum // cost to make array elements equal function minCost(arr) { let n = arr.length; let ans = Number.MAX_SAFE_INTEGER; // Try each element as the target value for (let i = 0; i < n; i++) { let currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (let j = 0; j < n; j++) { currentCost += Math.abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.min(ans currentCost); } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Produktion
100
[Forventet tilgang - 1] Brug af binær søgning - O(n Log (område)) tid og O(1) rum
Ideen er at bruge binær søgning til effektivt at finde den optimale værdi, som alle array-elementer skal konverteres til. Da totalomkostningsfunktionen danner en konveks kurve (først faldende og derefter stigende) på tværs af rækken af mulige værdier, kan vi bruge binær søgning til at lokalisere minimumspunktet for denne kurve ved at sammenligne omkostningerne ved et midtpunkt med omkostningerne ved midtpunktet minus én, som fortæller os, hvilken retning vi skal søge videre.
Trin for trin tilgang:
- Find minimums- og maksimumværdierne i arrayet for at etablere søgeområdet
- Brug binær søgning mellem minimums- og maksimumværdierne for at finde den optimale målværdi
- For hver prøveværdi beregnes de samlede omkostninger ved at konvertere alle array-elementer til denne værdi
- Sammenlign omkostningerne ved det aktuelle midtpunkt med omkostningerne ved midtpunktet minus én for at bestemme søgeretningen
- Fortsæt med at indsnævre søgeområdet, indtil du finder minimumsomkostningskonfigurationen
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function to find the cost of changing // array values to mid. int findCost(vector<int> &arr int mid) { int n = arr.size(); int ans = 0; for (int i=0; i<n; i++) { ans += abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. int minCost(vector<int> &arr) { int n = arr.size(); int mini = INT_MAX maxi = INT_MIN; // Find the minimum and maximum value. for (int i=0; i<n; i++) { mini = min(mini arr[i]); maxi = max(maxi arr[i]); } int s = mini e = maxi; int ans = INT_MAX; while (s <= e) { int mid = s + (e-s)/2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid-1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr); return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function to find the cost of changing // array values to mid. static int findCost(int[] arr int mid) { int n = arr.length; int ans = 0; for (int i = 0; i < n; i++) { ans += Math.abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.length; int mini = Integer.MAX_VALUE maxi = Integer.MIN_VALUE; // Find the minimum and maximum value. for (int i = 0; i < n; i++) { mini = Math.min(mini arr[i]); maxi = Math.max(maxi arr[i]); } int s = mini e = maxi; int ans = Integer.MAX_VALUE; while (s <= e) { int mid = s + (e - s) / 2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function to find the cost of changing # array values to mid. def findCost(arr mid): n = len(arr) ans = 0 for i in range(n): ans += abs(arr[i] - mid) return ans # Function which finds the minimum cost # to make array elements equal. def minCost(arr): n = len(arr) mini = float('inf') maxi = float('-inf') # Find the minimum and maximum value. for i in range(n): mini = min(mini arr[i]) maxi = max(maxi arr[i]) s = mini e = maxi ans = float('inf') while s <= e: mid = s + (e - s) // 2 cost1 = findCost(arr mid) cost2 = findCost(arr mid - 1) if cost1 < cost2: ans = cost1 s = mid + 1 else: e = mid - 1 return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function to find the cost of changing // array values to mid. static int findCost(int[] arr int mid) { int n = arr.Length; int ans = 0; for (int i = 0; i < n; i++) { ans += Math.Abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.Length; int mini = int.MaxValue maxi = int.MinValue; // Find the minimum and maximum value. for (int i = 0; i < n; i++) { mini = Math.Min(mini arr[i]); maxi = Math.Max(maxi arr[i]); } int s = mini e = maxi; int ans = int.MaxValue; while (s <= e) { int mid = s + (e - s) / 2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function to find the cost of changing // array values to mid. function findCost(arr mid) { let n = arr.length; let ans = 0; for (let i = 0; i < n; i++) { ans += Math.abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. function minCost(arr) { let n = arr.length; let mini = Number.MAX_SAFE_INTEGER maxi = Number.MIN_SAFE_INTEGER; // Find the minimum and maximum value. for (let i = 0; i < n; i++) { mini = Math.min(mini arr[i]); maxi = Math.max(maxi arr[i]); } let s = mini e = maxi; let ans = Number.MAX_SAFE_INTEGER; while (s <= e) { let mid = Math.floor(s + (e - s) / 2); let cost1 = findCost(arr mid); let cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Produktion
100
[Forventet tilgang - 2] Brug af sortering - O(n Log n) tid og O(1) rum
Ideen er at finde den optimale værdi, som alle elementer skal udlignes til, som skal være et af de eksisterende array-elementer. Ved først at sortere arrayet og derefter iterere gennem hvert element som en potentiel målværdi, beregner vi omkostningerne ved at transformere alle andre elementer til den værdi ved effektivt at spore summen af elementer til venstre og højre for den aktuelle position.
Trin for trin tilgang:
- Sorter arrayet for at behandle elementer i stigende rækkefølge.
- For hvert element som en potentiel målværdi beregnes to omkostninger: at bringe mindre elementer op og større elementer ned.
- Spor venstre og højre summer for at beregne disse omkostninger effektivt i konstant tid pr. iteration.
- Øger omkostningerne for mindre elementer: (nuværende værdi × antal mindre elementer) - (summen af mindre elementer)
- Reduktion af omkostningerne for større elementer: (summen af større elementer) - (aktuel værdi × antal større elementer)
- Sammenlign de nuværende omkostninger med minimumsomkostninger.
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function which finds the minimum cost // to make array elements equal. int minCost(vector<int> &arr) { int n = arr.size(); // Sort the array sort(arr.begin() arr.end()); // Variable to store sum of elements // to the right side. int right = 0; for (int i=0; i<n; i++) { right += arr[i]; } int ans = INT_MAX; int left = 0; for (int i=0; i<n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n-1-i) * arr[i]; ans = min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr); return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.length; // Sort the array Arrays.sort(arr); // Variable to store sum of elements // to the right side. int right = 0; for (int i = 0; i < n; i++) { right += arr[i]; } int ans = Integer.MAX_VALUE; int left = 0; for (int i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n - 1 - i) * arr[i]; ans = Math.min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function which finds the minimum cost # to make array elements equal. def minCost(arr): n = len(arr) # Sort the array arr.sort() # Variable to store sum of elements # to the right side. right = sum(arr) ans = float('inf') left = 0 for i in range(n): # Remove the current element from right sum. right -= arr[i] # Find cost of incrementing left side elements leftCost = i * arr[i] - left # Find cost of decrementing right side elements. rightCost = right - (n - 1 - i) * arr[i] ans = min(ans leftCost + rightCost) # Add current value to left sum left += arr[i] return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.Length; // Sort the array Array.Sort(arr); // Variable to store sum of elements // to the right side. int right = 0; for (int i = 0; i < n; i++) { right += arr[i]; } int ans = int.MaxValue; int left = 0; for (int i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n - 1 - i) * arr[i]; ans = Math.Min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function which finds the minimum cost // to make array elements equal. function minCost(arr) { let n = arr.length; // Sort the array arr.sort((a b) => a - b); // Variable to store sum of elements // to the right side. let right = 0; for (let i = 0; i < n; i++) { right += arr[i]; } let ans = Number.MAX_SAFE_INTEGER; let left = 0; for (let i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements let leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. let rightCost = right - (n - 1 - i) * arr[i]; ans = Math.min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Produktion
100Opret quiz