Givet en 2D binær matrix sammen med[][] hvor nogle celler er forhindringer (angivet med0) og resten er frie celler (betegnet ved1) din opgave er at finde længden af den længst mulige rute fra en kildecelle (xs ys) til en destinationscelle (xd yd) .
- Du må kun flytte til tilstødende celler (op ned til venstre til højre).
- Diagonale bevægelser er ikke tilladt.
- En celle, der én gang er besøgt i en sti, kan ikke genbesøges i den samme sti.
- Hvis det er umuligt at nå destinationen retur
-1.
Eksempler:
Input: xs = 0 ys = 0 xd = 1 yd = 7
med[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Produktion: 24
Forklaring:
streng ind i array java
Input: xs = 0 ys = 3 xd = 2 yd = 2
med[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Produktion: -1
Forklaring:
Vi kan se, at det er umuligt
nå cellen (22) fra (03).
Indholdsfortegnelse
- [Fremgangsmåde] Brug af tilbagesporing med besøgt matrix
- [Optimeret tilgang] Uden at bruge ekstra plads
[Fremgangsmåde] Brug af tilbagesporing med besøgt matrix
CPPIdeen er at bruge Backtracking . Vi starter fra kildecellen i matrixen, bevæger os fremad i alle fire tilladte retninger og kontrollerer rekursivt, om de fører til løsningen eller ej. Hvis destinationen findes, opdaterer vi værdien af den længste sti ellers, hvis ingen af ovenstående løsninger virker, returnerer vi falsk fra vores funktion.
#include #include #include #include using namespace std; // Function to find the longest path using backtracking int dfs(vector<vector<int>> &mat vector<vector<bool>> &visited int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } vector<vector<bool>> visited(m vector<bool>(n false)); return dfs(mat visited xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java import java.util.Arrays; public class GFG { // Function to find the longest path using backtracking public static int dfs(int[][] mat boolean[][] visited int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; // Invalid path } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } boolean[][] visited = new boolean[m][n]; return dfs(mat visited xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking def dfs(mat visited i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid blocked or already visited if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0 or visited[i][j]: return -1 # Invalid path # Mark current cell as visited visited[i][j] = True maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat visited ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - unmark current cell visited[i][j] = False return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 visited = [[False for _ in range(n)] for _ in range(m)] return dfs(mat visited xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking static int dfs(int[] mat bool[] visited int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0 || visited[i j]) { return -1; // Invalid path } // Mark current cell as visited visited[i j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i j] = false; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { int m = mat.GetLength(0); int n = mat.GetLength(1); // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } bool[] visited = new bool[m n]; return dfs(mat visited xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking function dfs(mat visited i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } const visited = Array(m).fill().map(() => Array(n).fill(false)); return dfs(mat visited xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Produktion
24
Tidskompleksitet: O(4^(m*n)) For hver celle i m x n-matrixen udforsker algoritmen op til fire mulige retninger (op ned til venstre til højre), hvilket fører til et eksponentielt antal stier. I værste fald udforsker den alle mulige veje, hvilket resulterer i en tidskompleksitet på 4^(m*n).
Hjælpeplads: O(m*n) Algoritmen bruger en m x n besøgt matrix til at spore besøgte celler og en rekursionsstak, der i værste fald kan vokse til en dybde på m * n (f.eks. når man udforsker en sti, der dækker alle celler). Således er hjælperummet O(m*n).
[Optimeret tilgang] Uden at bruge ekstra plads
I stedet for at opretholde en separat besøgt matrix kan vi genbruge inputmatrixen at markere besøgte celler under gennemkørslen. Dette sparer ekstra plads og sikrer stadig, at vi ikke besøger den samme celle i en sti igen.
Nedenfor er den trinvise tilgang:
- Start fra kildecellen
(xs ys). - Udforsk alle fire mulige retninger ved hvert trin (højre ned til venstre op).
- For hvert gyldigt træk:
- Tjek grænser og sørg for, at cellen har værdi
1(fri celle). - Marker cellen som besøgt ved midlertidigt at indstille den til
0. - Gå tilbage til den næste celle og forøg stiens længde.
- Tjek grænser og sørg for, at cellen har værdi
- Hvis destinationscellen
(xd yd)er nået sammenlign den aktuelle vejlængde med den hidtil maksimale og opdater svaret. - Backtrack: Gendan cellens oprindelige værdi (
1), før du vender tilbage for at tillade andre stier at udforske den. - Fortsæt med at udforske, indtil alle mulige stier er besøgt.
- Returner den maksimale vejlængde. Hvis destinationen ikke kan nås, returneres
-1
#include #include #include #include using namespace std; // Function to find the longest path using backtracking without extra space int dfs(vector<vector<int>> &mat int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java public class GFG { // Function to find the longest path using backtracking without extra space public static int dfs(int[][] mat int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking without extra space def dfs(mat i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid or blocked (0 means blocked or visited) if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0: return -1 # Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0 maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - restore the cell's original value (1) mat[i][j] = 1 return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 return dfs(mat xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking without extra space static int dfs(int[] mat int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i j] = 1; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking without extra space function dfs(mat i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } return dfs(mat xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Produktion
24
Tidskompleksitet: O(4^(m*n)) Algoritmen udforsker stadig op til fire retninger pr. celle i m x n matrixen, hvilket resulterer i et eksponentielt antal stier. Modifikationen på stedet påvirker ikke antallet af udforskede stier, så tidskompleksiteten forbliver 4^(m*n).
Hjælpeplads: O(m*n) Mens den besøgte matrix elimineres ved at ændre inputmatricen på stedet, kræver rekursionsstakken stadig O(m*n) plads, da den maksimale rekursionsdybde kan være m * n i værste fald (f.eks. en sti, der besøger alle celler i et gitter med for det meste 1s).
linux kørselskommando