logo

Tæl måder at stave et tal på med gentagne cifre

Prøv det på GfG Practice ' title= #practiceLinkDiv { display: ingen !important; }

Givet en streng, der indeholder cifre i et tal. Nummeret kan indeholde mange samme kontinuerlige cifre i det. Opgaven er at tælle antallet af måder at stave tallet på. 
For eksempel overveje 8884441100, man kan stave det simpelthen som triple otte triple fire dobbelt to og dobbelt nul. Man kan også stave som dobbelt otte otte fire dobbelt fire to to dobbelt nul. 

Eksempler:   

Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16
Recommended Practice Stav et tal Prøv det!

Dette er et simpelt problem med permutation og kombination. Hvis vi tager et eksempel på testcase givet i spørgsmålet 11112. Svaret afhænger af antallet af mulige understrenge af 1111. Antallet af mulige understrenge af '1111' er 2^3 = 8, fordi det er antallet af kombinationer af 4 - 1 =  3 separatorer '|' mellem to tegn i strengen (cifre i tal repræsenteret af strengen): '1|1|1|1'. Da vores kombinationer vil afhænge af, om vi vælger et bestemt 1, og for '2' vil der kun være én mulighed 2^0 = 1, så svaret for '11112' vil være 8*1 = 8. 



Så fremgangsmåden er at tælle det bestemte kontinuerlige ciffer i streng og gange 2^(tæl-1) med tidligere resultat. 

C++
// C++ program to count number of ways we // can spell a number #include   using namespace std; typedef long long int ll; // Function to calculate all possible spells of // a number with repeated digits // num --> string which is favourite number ll spellsCount(string num) {  int n = num.length();  // final count of total possible spells  ll result = 1;  // iterate through complete number  for (int i=0; i<n; i++)  {  // count contiguous frequency of particular  // digit num[i]  int count = 1;  while (i < n-1 && num[i+1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply with result   result = result * pow(2 count-1);  }  return result; } // Driver program to run the case int main() {  string num = '11112';  cout << spellsCount(num);  return 0; } 
Java
// Java program to count number of ways we // can spell a number import java.io.*; class GFG {    // Function to calculate all possible   // spells of a number with repeated digits  // num --> string which is favourite number  static long spellsCount(String num)  {    int n = num.length();  // final count of total possible spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++) {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num.charAt(i + 1)   == num.charAt(i)) {    count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.pow(2 count - 1);  }  return result;  }  public static void main(String[] args)  {  String num = '11112';  System.out.print(spellsCount(num));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python3 program to count number of # ways we can spell a number # Function to calculate all possible  # spells of a number with repeated  # digits num --> string which is  # favourite number def spellsCount(num): n = len(num); # final count of total # possible spells result = 1; # iterate through complete # number i = 0; while(i<n): # count contiguous frequency  # of particular digit num[i] count = 1; while (i < n - 1 and num[i + 1] == num[i]): count += 1; i += 1; # Compute 2^(count-1) and # multiply with result  result = result * int(pow(2 count - 1)); i += 1; return result; # Driver Code num = '11112'; print(spellsCount(num)); # This code is contributed # by mits 
C#
// C# program to count number of ways we // can spell a number using System; class GFG {    // Function to calculate all possible   // spells of a number with repeated   // digits num --> string which is  // favourite number  static long spellsCount(String num)  {    int n = num.Length;  // final count of total possible  // spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++)  {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num[i + 1]   == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.Pow(2 count - 1);  }    return result;  }  // Driver code  public static void Main()  {  String num = '11112';  Console.Write(spellsCount(num));  } } // This code is contributed by nitin mittal. 
PHP
 // PHP program to count  // number of ways we // can spell a number // Function to calculate  // all possible spells of // a number with repeated  // digits num --> string // which is favourite number function spellsCount($num) { $n = strlen($num); // final count of total // possible spells $result = 1; // iterate through  // complete number for ($i = 0; $i < $n; $i++) { // count contiguous frequency  // of particular digit num[i] $count = 1; while ($i < $n - 1 && $num[$i + 1] == $num[$i]) { $count++; $i++; } // Compute 2^(count-1) and // multiply with result  $result = $result * pow(2 $count - 1); } return $result; } // Driver Code $num = '11112'; echo spellsCount($num); // This code is contributed // by nitin mittal.  ?> 
JavaScript
<script> // Javascript program to count number of  // ways we can spell a number // Function to calculate all possible  // spells of a number with repeated  // digits num --> string which is // favourite number function spellsCount(num) {  let n = num.length;  // Final count of total possible  // spells  let result = 1;  // Iterate through complete number  for (let i = 0; i < n; i++)  {    // Count contiguous frequency of   // particular digit num[i]  let count = 1;    while (i < n - 1 &&   num[i + 1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   Math.pow(2 count - 1);  }  return result; }   // Driver code let num = '11112'; document.write(spellsCount(num)); // This code is contributed by code_hunt   </script> 

Produktion
8

Tidskompleksitet: O(n*log(n))
Hjælpeplads: O(1)

Hvis du har en anden tilgang til at løse dette problem, så del venligst.