logo

Tæl minimumbits, der skal vendes, således at XOR af A og B er lig med C

Givet en sekvens af tre binære sekvenser A B og C af N bit. Tæl minimumsbits, der kræves for at vende A og B, således at XOR af A og B er lig med C. For Eksempel:  
 

Input: N = 3 A = 110 B = 101 C = 001 Output: 1 We only need to flip the bit of 2nd position of either A or B such that A ^ B = C i.e. 100 ^ 101 = 001


 


EN Naiv tilgang er at generere alle mulige kombinationer af bits i A og B og derefter XORing dem for at kontrollere, om det er lig med C eller ej. Tidskompleksitet af denne tilgang vokser eksponentielt, så det ville ikke være bedre for en stor værdi af N.
En anden tilgang er at bruge begrebet XOR. 
 



XOR Truth Table   Input     Output   X Y Z 0 0 - 0 0 1 - 1 1 0 - 1 1 1 - 0


Hvis vi generaliserer, vil vi opdage, at vi ved enhver position af A og B kun behøver at vende ith(0 til N-1) position for enten A eller B, ellers vil vi ikke kunne opnå minimum antal bits. 
Så ved enhver position af i (0 til N-1) vil du støde på to typer situationer, dvs. enten A[i] == B[i] eller A[i] != B[i]. Lad os diskutere det én efter én. 
 


  • Hvis A[i] == B[i] så vil XOR af disse bit være 0, to tilfælde opstår i C[]: C[i]==0 eller C[i]==1. 
    Hvis C[i] == 0, er det ikke nødvendigt at spejlvende bit, men hvis C[i] == 1, så skal vi spejlvende bit enten i A[i] eller B[i], så 1^0 == 1 eller 0^1 == 1. 
     

  • Hvis A[i] != B[i] så giver XOR af disse Bit en 1 I C opstår der igen to tilfælde, dvs. enten C[i] == 0 eller C[i] == 1. 
    Derfor, hvis C[i] == 1, behøver vi ikke at spejlvende bit, men hvis C[i] == 0, skal vi spejlvende bit enten i A[i] eller B[i], så 0^0==0 eller 1^1==0 
     


 

C++
// C++ code to count the Minimum bits in A and B #include   using namespace std; int totalFlips(char *A char *B char *C int N) {  int count = 0;  for (int i=0; i < N; ++i)  {  // If both A[i] and B[i] are equal  if (A[i] == B[i] && C[i] == '1')  ++count;  // If Both A and B are unequal  else if (A[i] != B[i] && C[i] == '0')  ++count;  }  return count; } //Driver Code int main() {  //N represent total count of Bits  int N = 5;  char a[] = '10100';  char b[] = '00010';  char c[] = '10011';  cout << totalFlips(a b c N);  return 0; } 
Java
// Java code to count the Minimum bits in A and B class GFG {    static int totalFlips(String A String B  String C int N)  {  int count = 0;    for (int i = 0; i < N; ++i)  {  // If both A[i] and B[i] are equal  if (A.charAt(i) == B.charAt(i) &&   C.charAt(i) == '1')  ++count;    // If Both A and B are unequal  else if (A.charAt(i) != B.charAt(i)  && C.charAt(i) == '0')  ++count;  }    return count;  }    //driver code  public static void main (String[] args)  {  //N represent total count of Bits  int N = 5;  String a = '10100';  String b = '00010';  String c = '10011';    System.out.print(totalFlips(a b c N));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python code to find minimum bits to be flip def totalFlips(A B C N): count = 0 for i in range(N): # If both A[i] and B[i] are equal if A[i] == B[i] and C[i] == '1': count=count+1 # if A[i] and B[i] are unequal else if A[i] != B[i] and C[i] == '0': count=count+1 return count # Driver Code # N represent total count of Bits N = 5 a = '10100' b = '00010' c = '10011' print(totalFlips(a b c N)) 
C#
// C# code to count the Minimum // bits flip in A and B using System; class GFG {  static int totalFlips(string A string B  string C int N)  {  int count = 0;  for (int i = 0; i < N; ++i) {  // If both A[i] and B[i] are equal  if (A[i] == B[i] && C[i] == '1')  ++count;  // If Both A and B are unequal  else if (A[i] != B[i] && C[i] == '0')  ++count;  }  return count;  }  // Driver code  public static void Main()  {  // N represent total count of Bits  int N = 5;  string a = '10100';  string b = '00010';  string c = '10011';  Console.Write(totalFlips(a b c N));  } } // This code is contributed by Anant Agarwal. 
PHP
 // PHP code to count the // Minimum bits in A and B function totalFlips($A $B $C $N) { $count = 0; for ($i = 0; $i < $N; ++$i) { // If both A[i] and  // B[i] are equal if ($A[$i] == $B[$i] && $C[$i] == '1') ++$count; // If Both A and  // B are unequal else if ($A[$i] != $B[$i] && $C[$i] == '0') ++$count; } return $count; } // Driver Code // N represent total count of Bits $N = 5; $a = '10100'; $b = '00010'; $c = '10011'; echo totalFlips($a $b $c $N); // This code is contributed by nitin mittal. ?> 
JavaScript
<script> // Javascript code to count the Minimum bits in A and B   function totalFlips(A B C N)   {   let count = 0;   for (let i = 0; i < N; ++i) {     // If both A[i] and B[i] are equal   if (A[i] == B[i] && C[i] == '1')   ++count;     // If Both A and B are unequal   else if (A[i] != B[i] && C[i] == '0')   ++count;   }   return count;   }    // Driver Code    // N represent total count of Bits   let N = 5;   let a = '10100';   let b = '00010';   let c = '10011';     document.write(totalFlips(a b c N));    </script> 

Produktion
2


Tidskompleksitet: PÅ) 
Hjælpeplads: O(1)

Effektiv tilgang:

Denne fremgangsmåde følger O(log N) tidskompleksitet.

C++
// C++ code to count the Minimum bits in A and B #include    using namespace std; int totalFlips(string A string B string C int N) {  int INTSIZE = 31;  int ans = 0;  int i = 0;  while (N > 0) {  // Considering only 31 bits  int a = stoi(A.substr(i * INTSIZE min(INTSIZE N))  0 2);  int b = stoi(B.substr(i * INTSIZE min(INTSIZE N))  0 2);  int c = stoi(C.substr(i * INTSIZE min(INTSIZE N))  0 2);  int Z = a ^ b ^ c;  // builtin function for  // counting the number of set bits.  ans += __builtin_popcount(Z);  i++;  N -= 32;  }  return ans; } // Driver Code int main() {  // N represent total count of Bits  int N = 5;  char a[] = '10100';  char b[] = '00010';  char c[] = '10011';  cout << totalFlips(a b c N);  return 0; } // This code is contributed by Kasina Dheeraj. 
Java
// Java code to count the Minimum bits in A and B class GFG {  static int totalFlips(String A String B String C  int N)  {  int INTSIZE = 31;  int ans = 0;  int i = 0;  while (N > 0) {  // Considering only 31 bits  int a = Integer.parseInt(  A.substring(i * INTSIZE  i * INTSIZE  + Math.min(INTSIZE N))  2);  int b = Integer.parseInt(  B.substring(i * INTSIZE  i * INTSIZE  + Math.min(INTSIZE N))  2);  int c = Integer.parseInt(  C.substring(i * INTSIZE  i * INTSIZE  + Math.min(INTSIZE N))  2);  int Z = a ^ b ^ c;  // builtin function for  // counting the number of set bits.  ans += Integer.bitCount(Z);  i++;  N -= 32;  }  return ans;  }  // driver code  public static void main(String[] args)  {  // N represent total count of Bits  int N = 5;  String a = '10100';  String b = '00010';  String c = '10011';  System.out.print(totalFlips(a b c N));  } } // This code is contributed by Kasina Dheeraj. 
Python3
def totalFlips(A B C N): INTSIZE = 31 ans = 0 i = 0 while N > 0: # Considering only 31 bits a = int(A[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) b = int(B[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) c = int(C[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) Z = a ^ b ^ c # builtin function for counting the number of set bits. ans += bin(Z).count('1') i += 1 N -= 32 return ans # Driver Code if __name__ == '__main__': # N represent total count of Bits N = 5 a = '10100' b = '00010' c = '10011' print(totalFlips(a b c N)) 
C#
using System; class Program {  static int TotalFlips(string A string B string C  int N)  {  int INTSIZE = 31;  int ans = 0;  int i = 0;  while (N > 0) {  // Considering only 31 bits  int a = Convert.ToInt32(  A.Substring(i * INTSIZE  Math.Min(INTSIZE N))  2);  int b = Convert.ToInt32(  B.Substring(i * INTSIZE  Math.Min(INTSIZE N))  2);  int c = Convert.ToInt32(  C.Substring(i * INTSIZE  Math.Min(INTSIZE N))  2);  int Z = a ^ b ^ c;  // builtin function for  // counting the number of set bits.  ans += BitCount(Z);  i++;  N -= 32;  }  return ans;  }  static int BitCount(int i)  {  i = i - ((i >> 1) & 0x55555555);  i = (i & 0x33333333) + ((i >> 2) & 0x33333333);  return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101)  >> 24;  }  static void Main(string[] args)  {  // N represent total count of Bits  int N = 5;  string a = '10100';  string b = '00010';  string c = '10011';  Console.WriteLine(TotalFlips(a b c N));  } } 
JavaScript
function TotalFlips(A B C N) {  let INTSIZE = 31;  let ans = 0;  let i = 0;  while (N > 0)  {  // Considering only 31 bits  let a = parseInt(A.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2);  let b = parseInt(B.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2);  let c = parseInt(C.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2);  let Z = a ^ b ^ c;  // builtin function for  // counting the number of set bits.  ans += Z.toString(2).split('1').length - 1;  i++;  N -= 32;  }  return ans; } // Driver Code let N = 5; let a = '10100'; let b = '00010'; let c = '10011'; console.log(TotalFlips(a b c N)); 

Produktion
2

Hvorfor virker denne kode?

Vi observerer, at bit skal vendes, hvis A[i]^B[i] !=C[i]. Så vi kan få antallet af flips ved at beregne antallet af sæt bits i a^b^c, hvor abc er heltalsrepræsentationer af binær streng. Men strenglængden kan være større end 32 størrelse af en typisk int-type. Så planen er at opdele strengen i understrenge med længde 31, udføre operationer og tælle sæt bits som nævnt for hver understreng.

Tidskompleksitet: O(log N) da while-løkken kører for log31N gange og tællesætbits tegner sig højst for O(32) for 32-bit og O(64) for 64-bit og for hver delstrengoperation O(31).

Rumkompleksitet: O(1) skal bemærkes, at understrengsoperation kræver O(32) plads.

 
'
 

Opret quiz