logo

Combinatorial Game Theory | Set 4 (Sprague - Grundy sætning)

Forudsætninger: Grundy Numbers/Numbers og Mex
Vi har allerede set i sæt 2 (https://www.geeksforgeeks.org/dsa/combinatorial-game-teory-set-2-mspil-nim/), som vi kan finde, hvem der vinder i et spil NIM uden faktisk at spille spillet.
Antag, at vi ændrer det klassiske NIM -spil lidt. Denne gang kan hver spiller kun fjerne 1 2 eller 3 sten (og ikke et antal sten som i det klassiske spil Nim). Kan vi forudsige, hvem der vinder?
Ja, vi kan forudsige vinderen ved hjælp af Sprague-Grundy-sætning.

Hvad er Sprague-Grundy sætning?  
Antag, at der er et sammensat spil (mere end et underspil), der består af N-underspil, og to spillere A og B. Derefter siger Sprague-Grundy-sætning, at hvis både A og B spiller optimalt (dvs. de ikke begår nogen fejl), er spilleren, der først er garanteret, at vinde, hvis Xor for grundnumrene i position i hver underspil i begyndelsen af ​​spillet ikke er ikke-zo. Ellers hvis XOR evalueres til nul, mister spiller A bestemt uanset hvad.

Hvordan anvendes Sprague Grundy -sætning?  
Vi kan anvende Sprague-Grundy-sætning i enhver Impartielt spil og løse det. De grundlæggende trin er anført som følger: 



  1. Bryd det sammensatte spil i underspil.
  2. Beregn derefter for hver underspil Grundy-nummeret på denne position.
  3. Beregn derefter XOR for alle de beregnede Grundy -numre.
  4. Hvis XOR-værdien er ikke-nul, vil den spiller, der skal dreje (første spiller), vinde ellers er han bestemt til at miste uanset hvad.

Eksempel Spil: Spillet starter med, at 3 bunker har 3 4 og 5 sten, og spilleren til at flytte kan tage ethvert positivt antal sten op til 3 kun fra nogen af ​​bunkerne [forudsat at bunken har så meget mængde sten]. Den sidste spiller, der flytter, vinder. Hvilken spiller vinder spillet under forudsætning af, at begge spillere spiller optimalt?

Hvordan kan man fortælle, hvem der vinder ved at anvende Sprague-Grundy-sætning?  
Som vi kan se, at dette spil i sig selv er sammensat af flere underspil. 
Første trin: Underspil kan betragtes som hver bunker. 
Andet trin: Vi ser fra nedenstående tabel det 

Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1 

Sprague - Grundy -sætning' src='//techcodeview.com/img/combinatorial/87/combinatorial-game-theory-set-4-sprague-grundy-theorem.webp' title=

Vi har allerede set, hvordan man beregner Grundy -numrene på dette spil i tidligere Artikel.
Tredje trin: XOR på 3 0 1 = 2
Fjerde trin: Da XOR er et ikke-nul-nummer, så vi kan sige, at den første spiller vinder.

Nedenfor er det program, der implementerer over 4 trin. 

C++
/* Game Description-  'A game is played between two players and there are N piles  of stones such that each pile has certain number of stones.  On his/her turn a player selects a pile and can take any  non-zero number of stones upto 3 (i.e- 123)  The player who cannot move is considered to lose the game  (i.e. one who take the last stone is the winner).  Can you find which player wins the game if both players play  optimally (they don't make any mistake)? '  A Dynamic Programming approach to calculate Grundy Number  and Mex and find the Winner using Sprague - Grundy Theorem. */ #include   using namespace std; /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started.  n -> Number of piles  Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game  The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) {  int Mex = 0;  while (Set.find(Mex) != Set.end())  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  unordered_set<int> Set; // A Hash Table  for (int i=1; i<=3; i++)  Set.insert (calculateGrundy (n-i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i=1; i<=n-1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  printf('Player 1 will winn');  else  printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  printf('Player 2 will winn');  else  printf('Player 1 will winn');  }  return; } // Driver program to test above functions int main() {  // Test Case 1  int piles[] = {3 4 5};  int n = sizeof(piles)/sizeof(piles[0]);  // Find the maximum element  int maximum = *max_element(piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  return (0); } 
Java
import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) {  int Mex = 0;  while (Set.contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<Integer> Set = new HashSet<Integer>();   for (int i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 1 will winn');  else  System.out.printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 2 will winn');  else  System.out.printf('Player 1 will winn');  }  return; } // Driver code public static void main(String[] args)  {    // Test Case 1  int piles[] = {3 4 5};  int n = piles.length;  // Find the maximum element  int maximum = Arrays.stream(piles).max().getAsInt();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[] = new int[maximum + 1];  Arrays.fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by PrinciRaj1992 
Python3
''' Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '     A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem.    piles[] -> Array having the initial count of stones/coins   in each piles before the game has started.   n -> Number of piles     Grundy[] -> Array having the Grundy Number corresponding to   the initial position of each piles in the game     The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set  def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n'  def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table  Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result  Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game  def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1  piles = [ 3 4 5 ] n = len(piles) # Find the maximum element  maximum = max(piles) # An array to cache the sub-problems so that  # re-computation of same sub-problems is avoided  Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it  for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n);    ''' Test Case 2   int piles[] = {3 8 2};   int n = sizeof(piles)/sizeof(piles[0]);       int maximum = *max_element (piles piles + n);     // An array to cache the sub-problems so that   // re-computation of same sub-problems is avoided   int Grundy [maximum + 1];   memset(Grundy -1 sizeof (Grundy));     // Calculate Grundy Value of piles[i] and store it   for (int i=0; i<=n-1; i++)   calculateGrundy(piles[i] Grundy);     declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56 
C#
using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG  {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) {  int Mex = 0;  while (Set.Contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<int> Set = new HashSet<int>();   for (int i = 1; i <= 3; i++)  Set.Add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles  int []Grundy int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  Console.Write('Player 1 will winn');  else  Console.Write('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  Console.Write('Player 2 will winn');  else  Console.Write('Player 1 will winn');  }  return; } // Driver code static void Main()  {    // Test Case 1  int []piles = {3 4 5};  int n = piles.Length;  // Find the maximum element  int maximum = piles.Max();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int []Grundy = new int[maximum + 1];  Array.Fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);    /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by mits 
JavaScript
<script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) {  let Mex = 0;    while (Set.has(Mex))  Mex++;    return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;    if (Grundy[n] != -1)  return (Grundy[n]);    // A Hash Table  let Set = new Set();    for (let i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));    // Store the result  Grundy[n] = calculateMex (Set);    return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) {  let xorValue = Grundy[piles[0]];    for (let i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];    if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  document.write('Player 1 will win  
'
); else document.write('Player 2 will win
'
); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'
); else document.write('Player 1 will win
'
); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>

Output:  

Player 1 will win

Tidskompleksitet: O (n^2) hvor n er det maksimale antal sten i en bunke. 

Rumkompleksitet: O (n) Da Grundy -arrayet bruges til at gemme resultaterne af underproblemer for at undgå overflødige beregninger, og det tager O (n) plads.

Referencer:  
https://en.wikipedia.org/wiki/sprague%E2%80%93grundy_theorem

Træning til læserne: Overvej nedenstående spil. 
Et spil spilles af to spillere med N heltal A1 A2 .. An. På hans/hendes tur vælger en spiller, at et heltal deler den med 2 3 eller 6 og tager derefter gulvet. Hvis heltalet bliver 0, fjernes det. Den sidste spiller, der flytter, vinder. Hvilken spiller vinder spillet, hvis begge spillere spiller optimalt?
Tip: Se eksemplet 3 af tidligere Artikel.



 

js global variabel