Binær til grå kodekonverteren er et logisk kredsløb, der bruges til at konvertere den binære kode til dens tilsvarende grå kode. Ved at sætte MSB af 1 under aksen og MSB af 1 over aksen og afspejle (n-1) bitkoden om en akse efter 2n-1rækker, kan vi få den n-bit grå kode.
Konverteringstabellen for 4-bit binær til grå kode er som følger:
Decimaltal | 4-bit binær kode | 4-bit grå kode |
---|---|---|
ABCD | G1G2G3G4 | |
0 | 0000 | 0000 |
1 | 0001 | 0001 |
2 | 0010 | 0011 |
3 | 0011 | 0010 |
4 | 0100 | 0110 |
5 | 0101 | 0111 |
6 | 0110 | 0101 |
7 | 0111 | 0100 |
8 | 1000 | 1100 |
9 | 1001 | 1101 |
10 | 1010 | 1111 |
elleve | 1011 | 1110 |
12 | 1100 | 1010 |
13 | 1101 | 1011 |
14 | 1110 | 1001 |
femten | 1111 | 1000 |
I 4-bit grå kode afspejles 3-bit koden mod aksen tegnet efter 2.4-1-1th=8thrække.
Sådan konverteres binær til grå kode
- I Gray-koden vil MSB altid være den samme som den 1. bit af det givne binære tal.
- For at udføre 2ndlidt af den grå kode, udfører vi eksklusive-eller (XOR) af 1. og 2ndbit af det binære tal. Det betyder, at hvis begge bits er forskellige, vil resultatet være et andet, og resultatet bliver 0.
- For at få 3rdbit af den grå kode, skal vi udføre den eksklusive-eller (XOR) af 2ndog 3rdbit af det binære tal. Processen forbliver den samme for de 4thlidt af Gray-koden. Lad os tage et eksempel for at forstå disse trin.
Eksempel
Antag, at vi har et binært tal 01101, som vi vil konvertere til Gray-kode. Der er følgende trin, der skal udføres for at udføre denne konvertering:
- Som vi ved, at den 1stbit af Gray-koden er den samme som MSB for det binære tal. I vores eksempel er MSB 0, så MSB eller 1stbit af den grå kode er 0.
- Dernæst udfører vi XOR-operationen af det 1. og det andet binære tal. Den 1stbit er 0, og 2ndbit er 1. Begge bits er forskellige, så 2ndbit af Gray-koden er 1.
- Nu udfører vi XOR af 2ndbit og 3rdbit af det binære tal. Den 2ndbit er 1, og 3rdbit er også 1. Disse bits er de samme, så 3rdbit af Gray-koden er 0.
- Udfør igen XOR-operationen af 3rdog 4thbit binært tal. Den 3rdbit er 1, og 4thbit er 0. Da disse er forskellige, er 4thbit af Gray-koden er 1.
- Til sidst skal du udføre XOR af de 4thbit og 5thbit af det binære tal. Den 4thbit er 0, og 5thbit er 1. Begge bits er forskellige, så de 5thbit af Gray-koden er 1.
- Den grå kode for det binære tal 01101 er 01011.
Konvertering af grå til binær kode
Grå til binær kodekonverteren er et logisk kredsløb, der bruges til at konvertere den grå kode til dens tilsvarende binære kode. Der er følgende kredsløb, der bruges til at konvertere Gray-koden til binært tal.
Ligesom binær til grå kodekonvertering; det er også en meget enkel proces. Der er følgende trin, der bruges til at konvertere Gray-koden til binær.
- Ligesom binær til grå, i grå til binær, 1stbit af det binære tal svarer til MSB for Gray-koden.
- Den 2ndbit af det binære tal er det samme som 1stbit af det binære tal, når 2ndbit af Gray-koden er 0; ellers den 2ndbit er ændret bit af 1stbit af binært tal. Det betyder, at hvis 1stbit af binæren er 1, derefter 2ndbit er 0, og hvis det er 0, så er 2ndlidt være 1.
- Den 2ndtrin fortsætter for alle bits af det binære tal.
Eksempel på grå kode til binær konvertering
Antag, at vi har den grå kode 01011, som vi vil konvertere til et binært tal. Der er følgende trin, som vi skal udføre for konverteringen:
- Den 1. bit af det binære tal er det samme som MSB for Gray-koden. Grå-kodens MSB er 0, så det binære tals MSB er 0.
- Nu til 2ndlidt, vi tjekker 2ndlidt af Gray-koden. Den 2ndbit af Gray-koden er 1, så 2ndbit af det binære tal er et, der er ændret til 1st
- Den næste bit af Gray-koden er 0; den 3rdbit er det samme som 2ndbit af Gray-koden, dvs. 1.
- Den 4thbit af Gray-koden er 1; den 4thbit af det binære tal er 0, der er det ændrede tal af 3rd
- Den 5thbit af Gray-koden er 1; den 5thbit af det binære tal er 1; det er det ændrede nummer af de 4thbit af det binære tal.
- Så det binære nummer for den grå kode 01011 er 01101.
Bits af 4-bit Gray kode betragtes som G4G3G2G1. Nu fra konverteringstabellen,
Det Karnaugh kort (K-maps) for G4, G3, G2,og G1er som følgende: